Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Build Your Own Programming Language

You're reading from   Build Your Own Programming Language A programmer's guide to designing compilers, interpreters, and DSLs for modern computing problems

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781804618028
Length 556 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Clinton  L. Jeffery Clinton L. Jeffery
Author Profile Icon Clinton L. Jeffery
Clinton L. Jeffery
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Section I: Programming Language Frontends
2. Why Build Another Programming Language? FREE CHAPTER 3. Programming Language Design 4. Scanning Source Code 5. Parsing 6. Syntax Trees 7. Section II: Syntax Tree Traversals
8. Symbol Tables 9. Checking Base Types 10. Checking Types on Arrays, Method Calls, and Structure Accesses 11. Intermediate Code Generation 12. Syntax Coloring in an IDE 13. Section III: Code Generation and Runtime Systems
14. Preprocessors and Transpilers 15. Bytecode Interpreters 16. Generating Bytecode 17. Native Code Generation 18. Implementing Operators and Built-In Functions 19. Domain Control Structures 20. Garbage Collection 21. Final Thoughts 22. Section IV: Appendix
23. Answers
24. Other Books You May Enjoy
25. Index
Appendix: Unicon Essentials

Understanding preprocessors

A preprocessor applies a transformation to source code. Some preprocessors are stand-alone tools, usable by and independent of any programming language tool. The most famous of these is probably the Unix m4 preprocessor. However, most preprocessors are tied to, associated directly with, and often integrated into a particular programming language and apply the transformation before the language compiler reads it in for lexical analysis. The output code from a preprocessor usually resembles its input with only a few changes, so you might wonder: why bother? Usually, the reason is that the judicious use of a preprocessor can make the code shorter and more readable.

A typical preprocessor transformation might be to replace all occurrences of some symbolic abbreviation such as PI with 3.1415. Another typical preprocessing example would be to expand some function-like syntax with parameters at compile-time, such as replacing occurrences of CUBED(X) with ...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime