Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Supervised Learning with Python

You're reading from   Applied Supervised Learning with Python Use scikit-learn to build predictive models from real-world datasets and prepare yourself for the future of machine learning

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher
ISBN-13 9781789954920
Length 404 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ishita Mathur Ishita Mathur
Author Profile Icon Ishita Mathur
Ishita Mathur
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Arrow right icon
View More author details
Toc

Summary


In this chapter, we introduced the concept of supervised machine learning, along with a number of use cases, including the automation of manual tasks such as identifying hairstyles from the 1960s and 1980s. In this introduction, we encountered the concept of labeled datasets and the process of mapping one information set (the input data or features) to the corresponding labels.

We took a practical approach to the process of loading and cleaning data using Jupyter notebooks and the extremely powerful pandas library. Note that this chapter has only covered a small fraction of the functionality within pandas, and that an entire book could be dedicated to the library itself. It is recommended that you become familiar with reading the pandas documentation and continue to develop your pandas skills through practice.

The final section of this chapter covered a number of data quality issues that need to be considered to develop a high-performing supervised learning model, including missing data, class imbalance, and low sample sizes. We discussed a number of options for managing such issues and emphasized the importance of checking these mitigations against the performance of the model.

In the next chapter, we will extend upon the data cleaning process that we covered and will investigate the data exploration and visualization process. Data exploration is a critical aspect of any machine learning solution, as without a comprehensive knowledge of the dataset, it would be almost impossible to model the information provided.

You have been reading a chapter from
Applied Supervised Learning with Python
Published in: Apr 2019
Publisher:
ISBN-13: 9781789954920
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image