Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Amazon Redshift Cookbook

You're reading from   Amazon Redshift Cookbook Recipes for building modern data warehousing solutions

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800569683
Length 384 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Shruti Worlikar Shruti Worlikar
Author Profile Icon Shruti Worlikar
Shruti Worlikar
Harshida Patel Harshida Patel
Author Profile Icon Harshida Patel
Harshida Patel
Thiyagarajan Arumugam Thiyagarajan Arumugam
Author Profile Icon Thiyagarajan Arumugam
Thiyagarajan Arumugam
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Getting Started with Amazon Redshift 2. Chapter 2: Data Management FREE CHAPTER 3. Chapter 3: Loading and Unloading Data 4. Chapter 4: Data Pipelines 5. Chapter 5: Scalable Data Orchestration for Automation 6. Chapter 6: Data Authorization and Security 7. Chapter 7: Performance Optimization 8. Chapter 8: Cost Optimization 9. Chapter 9: Lake House Architecture 10. Chapter 10: Extending Redshift's Capabilities 11. Other Books You May Enjoy Appendix

Chapter 9: Lake House Architecture

The lake house is an architectural pattern that makes data easily accessible across customers' analytics solutions, thereby preventing data silos. Amazon Redshift is the backbone of the lake house architecture—it allows enterprise customers to query data across data lakes, operational databases, and multiple data warehouses to build an analytics solution without having to move data in and out of these different systems. In this chapter, you will learn how you can leverage the lake house architecture to extend the data warehouse to services outside Amazon Redshift to build your solution, while taking advantage of the built-in integration. For example, you can use the Federated Query capability to join the operational data in your relational systems to historical data in Amazon Redshift to analyze a promotional trend.

The following recipes are discussed in this chapter:

  • Building a data lake catalog using Amazon Web Services (AWS...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime