Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
3D Graphics Rendering Cookbook

You're reading from   3D Graphics Rendering Cookbook A comprehensive guide to exploring rendering algorithms in modern OpenGL and Vulkan

Arrow left icon
Product type Paperback
Published in Aug 2021
Publisher Packt
ISBN-13 9781838986193
Length 670 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Viktor Latypov Viktor Latypov
Author Profile Icon Viktor Latypov
Viktor Latypov
Sergey Kosarevsky Sergey Kosarevsky
Author Profile Icon Sergey Kosarevsky
Sergey Kosarevsky
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Establishing a Build Environment 2. Chapter 2: Using Essential Libraries FREE CHAPTER 3. Chapter 3: Getting Started with OpenGL and Vulkan 4. Chapter 4: Adding User Interaction and Productivity Tools 5. Chapter 5: Working with Geometry Data 6. Chapter 6: Physically Based Rendering Using the glTF2 Shading Model 7. Chapter 7: Graphics Rendering Pipeline 8. Chapter 8: Image-Based Techniques 9. Chapter 9: Working with Scene Graphs 10. Chapter 10: Advanced Rendering Techniques and Optimizations 11. Other Books You May Enjoy

Using the Assimp library

Open Asset Import Library, which can be shortened to Assimp, is a portable open source C++ library that can be used to load various popular 3D model formats in a uniform manner.

Getting ready

We will use Assimp version 5.0 for this recipe. Here is the Bootstrap JSON snippet that you can use to download it:

{
  "name": "assimp",
  "source": {
    "type": "git",
    "url": "https://github.com/assimp/assimp.git",
    "revision": "a9f82dbe0b8a658003f93c7b5108ee4521458a18"
  }
}

Before we can link to Assimp, let's disable the unnecessary functionality in CMakeLists.txt. We will only be using the .obj and .gltf 3D format importers throughout this book:

set(ASSIMP_NO_EXPORT ON CACHE BOOL "")
set(ASSIMP_BUILD_ASSIMP_TOOLS OFF CACHE BOOL "")
set(ASSIMP_BUILD_TESTS OFF CACHE BOOL "")
set(ASSIMP_INSTALL_PDB OFF CACHE BOOL "")
set(  ASSIMP_BUILD_ALL_IMPORTERS_BY_DEFAULT OFF CACHE BOOL "")
set(ASSIMP_BUILD_OBJ_IMPORTER ON CACHE BOOL "")
set(ASSIMP_BUILD_GLTF_IMPORTER ON CACHE BOOL "")

The full source code can be found in Chapter2/07_Assimp.

How to do it...

Let's load a 3D model from a .glft2 file via Assimp. The simplest code to do this will look like this:

  1. First, we request the library to convert any geometric primitives it might encounter into triangles:
    const aiScene* scene = aiImportFile(  "data/rubber_duck/scene.gltf",  aiProcess_Triangulate);
  2. Additionally, we do some basic error checking, as follows:
    if ( !scene || !scene->HasMeshes() ) {
      printf("Unable to load file\n");
      exit( 255 );
    }
  3. Now we can convert the loaded 3D scene into a data format that we can use to upload the model into OpenGL. For this recipe, we will only use vertex positions in vec3 format without indices:
    std::vector<vec3> positions;
    const aiMesh* mesh = scene->mMeshes[0];
    for (unsigned int i = 0; i != mesh->mNumFaces; i++) {
      const aiFace& face = mesh->mFaces[i];
      const unsigned int idx[3] = { face.mIndices[0],    face.mIndices[1], face.mIndices[2] };
  4. To keep this example as simple as possible, we can flatten all of the indices and store only the vertex positions. Swap the y and z coordinates to orient the model:
      for (int j = 0; j != 3; j++) {
         const aiVector3D v = mesh->mVertices[idx[j]];
         positions.push_back( vec3(v.x, v.z, v.y) );
      }
    }
  5. Now we can deallocate the scene pointer with aiReleaseImport(scene) and upload the content of positions[] into an OpenGL buffer:
    GLuint VAO;
    glCreateVertexArrays(1, &VAO);
    glBindVertexArray(VAO);
    GLuint meshData;
    glCreateBuffers(1, &meshData);
    glNamedBufferStorage(meshData,  sizeof(vec3) * positions.size(),  positions.data(), 0);
    glVertexArrayVertexBuffer(  VAO, 0, meshData, 0, sizeof(vec3) );
    glEnableVertexArrayAttrib(VAO, 0 );
    glVertexArrayAttribFormat(  VAO, 0, 3, GL_FLOAT, GL_FALSE, 0);
    glVertexArrayAttribBinding(VAO, 0, 0);
  6. Save the number of vertices to be used by glDrawArrays() in the main loop and render the 3D model:
    const int numVertices =  static_cast<int>(positions.size());

Here, we use the same two-pass technique from the Doing math with GLM recipe to render a wireframe 3D model on top of a solid image:

while ( !glfwWindowShouldClose(window) ) {
  ...
  glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
  glDrawArrays(GL_TRIANGLES, 0, numVertices);
  ...
  glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
  glDrawArrays(GL_TRIANGLES, 0, numVertices);
  glfwSwapBuffers(window);
  glfwPollEvents(); 
}

The output graphics should look similar to the following screenshot:

Figure 2.6 – A wireframe rubber duck

Figure 2.6 – A wireframe rubber duck

You have been reading a chapter from
3D Graphics Rendering Cookbook
Published in: Aug 2021
Publisher: Packt
ISBN-13: 9781838986193
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image