(For more resources related to this topic, see here.)
We'll first have a quick overview of the features of BeagleBoard (with focus on the latest xM version) —an open source hardware platform, borne for audio, video, and digital signal processing. Then we will introduce the concept of rapid prototyping and explain what we can do with the BeagleBoard support tools from MATLAB® and Simulink® by MathWorks®. Finally, this article ends with a summary.
Different from most approaches that involve coding and compiling at a Linux PC and require intensive manual configuration in command-line manner, the rapid prototyping approach presented in this article is a Windows-based approach that features a Windows PC for embedded software development through user-friendly graphic interaction and relieves the developer from intensive coding so that you can concentrate on your application and algorithms and have the BeagleBoard run your inspiration.
First of all, let's begin with a quick overview of this article.
We can create a number of exciting projects to demonstrate how to build a prototype of an embedded audio, video, and digital signal processing system rapidly without intensive programming and coding. The main projects include:
These projects provide the workflow of building an embedded system. With the help of various online documents you can learn about setting up the development environment, writing software at a host PC running Microsoft Windows, and compiling the code for standalone ARM-executables at the BeagleBoard running Linux. Then you can learn the skills of rapid prototyping embedded audio and video systems via the BeagleBoard support tools from Simulink by MathWorks.
The main features of these techniques include:
These features will save you from intensive coding and will also relieve the pressure on you to build an embedded audio/video processing system without learning the complicated embedded Linux. The rapid prototyping techniques presented allow you to concentrate on your brilliant concept and algorithm design, rather than being distracted by the complicated embedded system and low-level manual programming. This is beneficial for students and academics who are primarily interested in the development of audio/video processing algorithms, and want to build an embedded prototype for proof-of-concept quickly.
BeagleBoard, the brainchild of a small group of Texas Instruments (TI) engineers and volunteers, is a pocket-sized, low-cost, fan-less, single-board computer containing TI Open Multimedia Application Platform 3 (OMAP3) System on a chip (SoC) processor, which integrates a 1 GHz ARM core and a TI's Digital Signal Processor (DSP) together. Since many consumer electronics devices nowadays run some form of embedded Linux-based environment and usually are on an ARM-based platform, the BeagleBoard was proposed as an inexpensive development kit for hobbyists, academics, and professionals for high-performance, ARM-based embedded system learning and evaluation. As an open hardware embedded computer with open source software development in mind, the BeagleBoard was created for audio, video, and digital signal processing with the purpose of meeting the demands of those who want to get involved with embedded system development and build their own embedded devices or solutions.
Furthermore, by utilizing standard interfaces, the BeagleBoard comes with all of the expandability of today's desktop machines. The developers can easily bring their own peripherals and turn the pocket-sized BeagleBoard into a single-board computer with many additional features.
The following figure shows the PCB layout and major components of the latest xM version of the BeagleBoard. The BeagleBoard-xM (referred to as BeagleBoard in this article unless specified otherwise) is an 8.25 x 8.25cm (3.25" x 3.25") circuit board that includes the following components:
To get going, we need to power the BeagleBoard by either the USB OTG mini port, which just provides current of up to 500 mA to run the board alone, or a 5V power source to run with external peripherals. The BeagleBoard boots from the microSD card once the power is on. Various alternative software images are available on the BeagleBoard website, so we can replace the factory default images and have the BeagleBoard run with many other popular embedded operating systems (like Andria and Windows CE). The off-the-shelf expansion via standard interfaces on the BeagleBoard allows developers to choose various components and operating systems they prefer to build their own embedded solutions or a desktop-like system as shown below:
A rapid prototyping approach allows you to quickly create a working implementation of your proof-of-concept and verify your audio or video applications on hardware early, which overcomes barriers in the design-implementation-validation loops and helps you find the right solution for your applications. Rapid prototyping not only reduces the development time from concept to product, but also allows you to identify defects and mistakes in system and algorithm design at an early stage. Prototyping your concept and evaluating its performance on a target hardware platform gives you confidence in your design, and promotes its success in applications.
The powerful BeagleBoard equipped with many standard interfaces provides a good hardware platform for rapid embedded system prototyping. On the other hand, the rapid prototyping tool, the BeagleBoard Support from Simulink package, provided by MathWorks with graphic user interface (GUI) allows developers to easily implement their concept and algorithm graphically in Simulink, and then directly run the algorithms at the BeagleBoard. In short, you design algorithms in MATLAB/Simulink and see them perform as a standalone application on the BeagleBoard. In this way, you can concentrate on your brilliant concept and algorithm design, rather than being distracted by the complicated embedded system and low-level manual programming.
The prototyping tool reduces the steep learning curve of embedded systems and helps hobbyists, students, and academics who have a great idea, but have little background knowledge of embedded systems. This feature is particularly useful to those who want to build a prototype of their applications in a short time.
MathWorks introduced the BeagleBoard support package for rapid prototyping in 2010. Since the release of MATLAB 2012a, support for the BeagleBoard-xM has been integrated into Simulink and is also available in the student version of MATLAB and Simulink. Your rapid prototyping starts with modeling your systems and implementing algorithms in MATLAB and Simulink. From your models, you can automatically generate algorithmic C code along with processor-specific, real-time scheduling code and peripheral drivers, and run them as standalone executables on embedded processors in real time. The following steps provide an overview of the work flow for BeagleBoard rapid prototyping in MATLAB/Simulink:
In this article, we have familiarized ourselves with the BeagleBoard and rapid prototyping by using MATLAB/Simulink. We have also looked at some of the features of rapid prototyping and the basic steps in rapid prototyping in MATLAB/Simulink.
Further resources on this subject: