Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Simulation for Data Science with R

You're reading from   Simulation for Data Science with R Effective Data-driven Decision Making

Arrow left icon
Product type Paperback
Published in Jun 2016
Publisher Packt
ISBN-13 9781785881169
Length 398 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Matthias Templ Matthias Templ
Author Profile Icon Matthias Templ
Matthias Templ
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction FREE CHAPTER 2. R and High-Performance Computing 3. The Discrepancy between Pencil-Driven Theory and Data-Driven Computational Solutions 4. Simulation of Random Numbers 5. Monte Carlo Methods for Optimization Problems 6. Probability Theory Shown by Simulation 7. Resampling Methods 8. Applications of Resampling Methods and Monte Carlo Tests 9. The EM Algorithm 10. Simulation with Complex Data 11. System Dynamics and Agent-Based Models Index

Summary

Simulation experiments are mostly data-dependent and thus perfectly suited for a data scientist. Different kinds of simulation techniques have been mentioned in this chapter. They are discussed in detail in the next chapters. We mentioned that simulation can be applied almost everywhere to show the properties and performance of methods, to make predictions, and to assess statistical uncertainty. We learned that no general approach exists and that quite different methods exist for different tasks, data sets, and problems. It's up to the data scientist and statistician to choose the right simulation approach.

Whenever computational power is an issue, remember that almost any simulation can be run in a parallel manner, and modern software is ready for this task.

In practice, one should not ask the question "Why did you use simulation?" to somebody who has applied simulation techniques, but rather "Why didn't you use simulation?" to somebody who did not.

You have been reading a chapter from
Simulation for Data Science with R
Published in: Jun 2016
Publisher: Packt
ISBN-13: 9781785881169
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image