Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Simplifying Data Engineering and Analytics with Delta

You're reading from   Simplifying Data Engineering and Analytics with Delta Create analytics-ready data that fuels artificial intelligence and business intelligence

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781801814867
Length 334 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Anindita Mahapatra Anindita Mahapatra
Author Profile Icon Anindita Mahapatra
Anindita Mahapatra
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1 – Introduction to Delta Lake and Data Engineering Principles
2. Chapter 1: Introduction to Data Engineering FREE CHAPTER 3. Chapter 2: Data Modeling and ETL 4. Chapter 3: Delta – The Foundation Block for Big Data 5. Section 2 – End-to-End Process of Building Delta Pipelines
6. Chapter 4: Unifying Batch and Streaming with Delta 7. Chapter 5: Data Consolidation in Delta Lake 8. Chapter 6: Solving Common Data Pattern Scenarios with Delta 9. Chapter 7: Delta for Data Warehouse Use Cases 10. Chapter 8: Handling Atypical Data Scenarios with Delta 11. Chapter 9: Delta for Reproducible Machine Learning Pipelines 12. Chapter 10: Delta for Data Products and Services 13. Section 3 – Operationalizing and Productionalizing Delta Pipelines
14. Chapter 11: Operationalizing Data and ML Pipelines 15. Chapter 12: Optimizing Cost and Performance with Delta 16. Chapter 13: Managing Your Data Journey 17. Other Books You May Enjoy

Data as code – An intelligent pipeline

All the operationalizing aspects referred to in the previous sections would have to be explicitly coded by DevOps, MLOps, and DataOps personas. A managed platform such as Databricks has abstracted the complexity of all these features as part of its DLT offering. The culmination of all these features out of the box gives rise to intelligent pipelines. There is a shift from a procedural to a declarative definition of a pipeline where, as an end user, you specify the "what" aspects of the data transformations, delegating the "how" aspects to the underlying platform. This is especially useful for simplifying the ETL development and go to production process when pipelines need to be democratized across multiple use cases for large, fast-moving data volumes such as IoT sensor data.

These are the key differentiators:

  • The ability to understand the dependencies of the transformations to generate the underlying DAG...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image