Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Machine Learning Projects

You're reading from   R Machine Learning Projects Implement supervised, unsupervised, and reinforcement learning techniques using R 3.5

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789807943
Length 334 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dr. Sunil Kumar Chinnamgari Dr. Sunil Kumar Chinnamgari
Author Profile Icon Dr. Sunil Kumar Chinnamgari
Dr. Sunil Kumar Chinnamgari
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Exploring the Machine Learning Landscape FREE CHAPTER 2. Predicting Employee Attrition Using Ensemble Models 3. Implementing a Jokes Recommendation Engine 4. Sentiment Analysis of Amazon Reviews with NLP 5. Customer Segmentation Using Wholesale Data 6. Image Recognition Using Deep Neural Networks 7. Credit Card Fraud Detection Using Autoencoders 8. Automatic Prose Generation with Recurrent Neural Networks 9. Winning the Casino Slot Machines with Reinforcement Learning 10. The Road Ahead
11. Other Books You May Enjoy

References

While the recommenderlab library is super popular in the R community, this is not the only choice for building a recommendation system. Here are some other popular libraries you may rely on to implement recommendation engines:

  • rrecsys: There are several popular recommendation systems, such as Global/Item/User-Average baselines, Item-Based KNN, FunkSVD, BPR, and weighted ALS for rapid prototyping. Refer to https://cran.r-project.org/web/packages/rrecsys/index.htmlImplementations for more information.
  • recosystem: The R wrapper of the libmf library (http://www.csie.ntu.edu.tw/~cjlin/libmf/) for recommender system using matrix factorization. It is typically used to approximate an incomplete matrix using the product of two matrices in a latent space. Other common names for this task include collaborative filtering, matrix completion, and matrix recovery. High-performance...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime