Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Machine Learning By Example

You're reading from   R Machine Learning By Example Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher
ISBN-13 9781784390846
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Raghav Bali Raghav Bali
Author Profile Icon Raghav Bali
Raghav Bali
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Getting Started with R and Machine Learning FREE CHAPTER 2. Let's Help Machines Learn 3. Predicting Customer Shopping Trends with Market Basket Analysis 4. Building a Product Recommendation System 5. Credit Risk Detection and Prediction – Descriptive Analytics 6. Credit Risk Detection and Prediction – Predictive Analytics 7. Social Media Analysis – Analyzing Twitter Data 8. Sentiment Analysis of Twitter Data Index

Model comparison and selection


We have explored various machine learning techniques and built several models to predict the credit ratings of customers, so now comes the question of which model we should select and how the models compare against each other. Our test data has 130 instances of customers with a bad credit rating (0) and 270 customers with a good credit rating (1).

If you remember, earlier we had talked about using domain knowledge and business requirements after doing modeling to interpret results and make decisions. Right now, our decision is to choose the best model to maximize profits and minimize losses for the German bank. Let us consider the following conditions:

  • If we incorrectly predict a customer with bad credit rating as good, the bank will end up losing the whole credit amount lent to him since he will default on the payment and so loss is 100%, which can be denoted as -1 for our ease of calculation.

  • If we correctly predict a customer with bad credit rating as bad,...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime