Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Finance

You're reading from   Python for Finance If your interest is finance and trading, then using Python to build a financial calculator makes absolute sense. As does this book which is a hands-on guide covering everything from option theory to time series.

Arrow left icon
Product type Paperback
Published in Apr 2014
Publisher
ISBN-13 9781783284375
Length 408 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxing Yan Yuxing Yan
Author Profile Icon Yuxing Yan
Yuxing Yan
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction and Installation of Python FREE CHAPTER 2. Using Python as an Ordinary Calculator 3. Using Python as a Financial Calculator 4. 13 Lines of Python to Price a Call Option 5. Introduction to Modules 6. Introduction to NumPy and SciPy 7. Visual Finance via Matplotlib 8. Statistical Analysis of Time Series 9. The Black-Scholes-Merton Option Model 10. Python Loops and Implied Volatility 11. Monte Carlo Simulation and Options 12. Volatility Measures and GARCH Index

The ARCH model

Based on previous arguments, we know that the volatility or variance of stock returns is not constant. According to the ARCH model, we could use the error terms from pervious estimation to help us predict the next volatility or variance. This model was developed by Robert F. Engle, the winner of the 2003 Nobel Prize in Economics. The formula for an ARCH (q) model is presented as follows:

The ARCH model

Here, The ARCH model is the variance at time t, The ARCH model is the ith coefficient, The ARCH model is the squared error term for the period of t-I, and q is the order of error terms. When q is 1, we have the simplest ARCH (1) process as follows:

The ARCH model

Simulating an ARCH (1) process

It is a good idea that we simulate an ARCH (1) process and have a better understanding of the volatility clustering, which means that high volatility is usually followed by a high-volatility period while low volatility is usually followed by a low-volatility period. The following code reflects this phenomenon:

import scipy as sp
sp.random.seed(12345)
n=1000 ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime