Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python: End-to-end Data Analysis

You're reading from   Python: End-to-end Data Analysis Leverage the power of Python to clean, scrape, analyze, and visualize your data

Arrow left icon
Product type Course
Published in May 2017
Publisher Packt
ISBN-13 9781788394697
Length 931 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (5):
Arrow left icon
Luiz Felipe Martins Luiz Felipe Martins
Author Profile Icon Luiz Felipe Martins
Luiz Felipe Martins
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Phuong Vo.T.H Phuong Vo.T.H
Author Profile Icon Phuong Vo.T.H
Phuong Vo.T.H
Martin Czygan Martin Czygan
Author Profile Icon Martin Czygan
Martin Czygan
Magnus Vilhelm Persson Magnus Vilhelm Persson
Author Profile Icon Magnus Vilhelm Persson
Magnus Vilhelm Persson
+1 more Show less
Arrow right icon
View More author details
Toc

Chapter 10. Evaluating Classifiers, Regressors, and Clusters

In this chapter, we will cover the following recipes:

  • Getting classification straight with the confusion matrix
  • Computing precision, recall, and F1-score
  • Examining a receiver operating characteristic and the area under a curve
  • Visualizing the goodness of fit
  • Computing MSE and median absolute error
  • Evaluating clusters with the mean silhouette coefficient
  • Comparing results with a dummy classifier
  • Determining MAPE and MPE
  • Comparing with a dummy regressor
  • Calculating the mean absolute error and the residual sum of squares
  • Examining the kappa of classification
  • Taking a look at the Matthews correlation coefficient

Introduction

Evaluating classifiers, regressors, and clusters is a critical multidimensional problem involving many aspects. Purely from an engineering perspective, we worry about speed, memory, and correctness. Under some circumstances, speed is everything. If memory is scarce, of course, we have to make that our priority. The...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image