Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Cleaning Cookbook

You're reading from   Python Data Cleaning Cookbook Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803239873
Length 486 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Walker Michael Walker
Author Profile Icon Michael Walker
Michael Walker
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Anticipating Data Cleaning Issues When Importing Tabular Data with pandas 2. Anticipating Data Cleaning Issues When Working with HTML, JSON, and Spark Data FREE CHAPTER 3. Taking the Measure of Your Data 4. Identifying Outliers in Subsets of Data 5. Using Visualizations for the Identification of Unexpected Values 6. Cleaning and Exploring Data with Series Operations 7. Identifying and Fixing Missing Values 8. Encoding, Transforming, and Scaling Features 9. Fixing Messy Data When Aggregating 10. Addressing Data Issues When Combining DataFrames 11. Tidying and Reshaping Data 12. Automate Data Cleaning with User-Defined Functions, Classes, and Pipelines 13. Index

Feature binning: equal width and equal frequency

We sometimes want to convert a feature from continuous to categorical. The process of creating k equally spaced intervals from the minimum to the maximum value of a distribution is called binning, or the somewhat less friendly discretization. Binning can address several important issues with a feature: skew, excessive kurtosis, and the presence of outliers.

Getting ready

Binning might be a good choice with the COVID-19 total cases data. It might also be useful with other variables in the dataset, including total deaths and population, but we will only work with total cases for now. total_cases is the target variable in the following code, so it is a column—the only column—on the y_train DataFrame.

Let’s try equal width and equal frequency binning with the COVID-19 data.

How to do it...

  1. We first need to import the EqualFrequencyDiscretiser and EqualWidthDiscretiser from feature_engine....
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime