Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Perform data collection, data processing, wrangling, visualization, and model building using Python

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781789955248
Length 478 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Avinash Navlani Avinash Navlani
Author Profile Icon Avinash Navlani
Avinash Navlani
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Foundation for Data Analysis
2. Getting Started with Python Libraries FREE CHAPTER 3. NumPy and pandas 4. Statistics 5. Linear Algebra 6. Section 2: Exploratory Data Analysis and Data Cleaning
7. Data Visualization 8. Retrieving, Processing, and Storing Data 9. Cleaning Messy Data 10. Signal Processing and Time Series 11. Section 3: Deep Dive into Machine Learning
12. Supervised Learning - Regression Analysis 13. Supervised Learning - Classification Techniques 14. Unsupervised Learning - PCA and Clustering 15. Section 4: NLP, Image Analytics, and Parallel Computing
16. Analyzing Textual Data 17. Analyzing Image Data 18. Parallel Computing Using Dask 19. Other Books You May Enjoy

Splitting training and testing sets

Data scientists need to assess the performance of a model, overcome overfitting, and tune the hyperparameters. All these tasks require some hidden data records that were not used in the model development phase. Before model development, the data needs to be divided into some parts, such as train, test, and validation sets. The training dataset is used to build the model. The test dataset is used to assess the performance of a model that was trained on the train set. The validation set is used to find the hyperparameters. Let's look at the following strategies for the train-test split in the upcoming subsections:

  • Holdout method
  • K-fold cross-validation
  • Bootstrap method

Holdout

In this method, the dataset is divided randomly into two parts: a training and testing set. Generally, this ratio is 2:1, which means 2/3 for training and 1/3 for testing. We can also split it into different ratios, such as 6:4, 7:3, and 8:2:

# partition data into training...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime