Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV 3 Computer Vision Application Programming Cookbook

You're reading from   OpenCV 3 Computer Vision Application Programming Cookbook Recipes to make your applications see

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher
ISBN-13 9781786469717
Length 474 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Robert Laganiere Robert Laganiere
Author Profile Icon Robert Laganiere
Robert Laganiere
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Playing with Images FREE CHAPTER 2. Manipulating Pixels 3. Processing the Colors of an Image 4. Counting the Pixels with Histograms 5. Transforming Images with Morphological Operations 6. Filtering the Images 7. Extracting Lines, Contours, and Components 8. Detecting Interest Points 9. Describing and Matching Interest Points 10. Estimating Projective Relations in Images 11. Reconstructing 3D Scenes 12. Processing Video Sequences 13. Tracking Visual Motion 14. Learning from Examples

Detecting scale-invariant features


The view invariance of feature detection was presented as an important concept in the introduction of this chapter. While orientation invariance, which is the ability to detect the same points even if an image is rotated, has been relatively well handled by the simple feature point detectors that have been presented so far, the invariance to scale changes is more difficult to achieve. To address this problem, the concept of scale-invariant features has been introduced in computer vision. The idea here is to not only have a consistent detection of keypoints no matter at which scale an object is pictured, but to also have a scale factor associated with each of the detected feature points. Ideally, for the same object point featured at two different scales on two different images, the ratio of the two computed scale factors should correspond to the ratio of their respective scales. In recent years, several scale-invariant features have been proposed, and this...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image