Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Neural Network Programming with TensorFlow
Neural Network Programming with TensorFlow

Neural Network Programming with TensorFlow: Unleash the power of TensorFlow to train efficient neural networks

eBook
Can$12.99 Can$44.99
Paperback
Can$55.99
Subscription
Free Trial

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Neural Network Programming with TensorFlow

Deep Feedforward Networks

In the first chapter, you learned about the mathematics which drives the logic behind all kinds of neural networks. In this chapter, we are going to focus on the most fundamental neutral networks, which are called feedforward neural networks. We will also look at deep feedforward networks with multiple hidden layers to improve the accuracy of the model.

We will be covering the following topics:

  • Defining feedforward networks
  • Understanding backpropagation
  • Implementing feedforward networks in TensorFlow
  • Analyzing the Iris dataset
  • Creating feedforward networks for image classification

Defining feedforward networks

Deep feedforward networks, also called feedforward neural networks, are sometimes also referred to as Multilayer Perceptrons (MLPs). The goal of a feedforward network is to approximate the function of f∗. For example, for a classifier, y=f∗(x) maps an input x to a label y. A feedforward network defines a mapping from input to label y=f(x;θ). It learns the value of the parameter θ that results in the best function approximation.

We discuss RNNs in Chapter 5Recurrent Neural Networks. Feedforward networks are a conceptual stepping stone on the path to recurrent networks, which power many natural language applications. Feedforward neural networks are called networks because they compose together many different functions which represent them. These functions are composed in a directed acyclic graph.

The model...

Understanding backpropagation

When a feedforward neural network is used to accept an input x and produce an output , information flows forward through the network elements. The input x provides the information that then propagates up to the hidden units at each layer and produces . This is called forward propagation. During training, forward propagation continues onward until it produces a scalar cost J(θ). The backpropagation algorithm, often called backprop, allows the information from the cost to then flow backward through the network in order to compute the gradient.

Computing an analytical expression for the gradient is straightforward, but numerically evaluating such an expression can be computationally expensive. The backpropagation algorithm does so using a simple and inexpensive procedure.

Backpropagation refers only to the method to compute the...

Implementing feedforward networks with TensorFlow

Feedforward networks can be easily implemented using TensorFlow by defining placeholders for hidden layers, computing the activation values, and using them to calculate predictions. Let's take an example of classification with a feedforward network:

X = tf.placeholder("float", shape=[None, x_size])
y = tf.placeholder("float", shape=[None, y_size])
weights_1 = initialize_weights((x_size, hidden_size), stddev)
weights_2 = initialize_weights((hidden_size, y_size), stddev)
sigmoid = tf.nn.sigmoid(tf.matmul(X, weights_1))
y = tf.matmul(sigmoid, weights_2)

Once the predicted value tensor has been defined, we calculate the cost function:

cost = tf.reduce_mean(tf.nn.OPERATION_NAME(labels=<actual value>, logits=<predicted value>))
updates_sgd = tf.train.GradientDescentOptimizer(sgd_step).minimize(cost)

Here...

Analyzing the Iris dataset

Let's look at a feedforward example using the Iris dataset.

In the Iris dataset, we will use 150 rows of data made up of 50 samples from each of three Iris species: Iris setosa, Iris virginica, and Iris versicolor.

Petal geometry compared from three iris species:
Iris Setosa, Iris Virginica, and Iris Versicolor.

In the dataset, each row contains data for each flower sample: sepal length, sepal width, petal length, petal width, and flower species. Flower species are stored as integers, with 0 denoting Iris setosa, 1 denoting Iris versicolor, and 2 denoting Iris virginica.

First, we will create a run() function that...

Implementing feedforward networks with images

Now we will look at how to use feedforward networks to classify images. We will be using notMNIST data. The dataset consists of images for nine letters, A to I.

NotMNIST dataset is similar to MNIST dataset but focuses on Alphabets instead of numbers (http://yaroslavvb.blogspot.in/2011/09/notmnist-dataset.html)

We have reduced the original dataset to a smaller version for the training so that you can easily get started. Download the ZIP files and extract them to the folder where the dataset is contained, https://1drv.ms/f/s!Av6fk5nQi2j-kniw-8GtP8sdWejs.

The pickle module of python implements an algorithm for serializing and de-serializing a Python object structure. Pickling is the process in which a Python object hierarchy is converted into a byte stream, unpickling is the inverse operation, where a byte stream is converted back into...

Defining feedforward networks


Deep feedforward networks, also called feedforward neural networks, are sometimes also referred to as Multilayer Perceptrons (MLPs). The goal of a feedforward network is to approximate the function of f∗. For example, for a classifier, y=f∗(x) maps an input x to a label y. A feedforward network defines a mapping from input to label y=f(x;θ). It learns the value of the parameter θ that results in the best function approximation.

We discuss RNNs in Chapter 5Recurrent Neural Networks. Feedforward networks are a conceptual stepping stone on the path to recurrent networks, which power many natural language applications. Feedforward neural networks are called networks because they compose together many different functions which represent them. These functions are composed in a directed acyclic graph.

The model is associated with a directed acyclic graph describing how the functions are composed together. For example, there are three functions f(1), f(2), and f(3) connected...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • • Develop a strong background in neural network programming from scratch, using the popular Tensorflow library.
  • • Use Tensorflow to implement different kinds of neural networks – from simple feedforward neural networks to multilayered perceptrons, CNNs, RNNs and more.
  • • A highly practical guide including real-world datasets and use-cases to simplify your understanding of neural networks and their implementation.

Description

If you're aware of the buzz surrounding the terms such as "machine learning," "artificial intelligence," or "deep learning," you might know what neural networks are. Ever wondered how they help in solving complex computational problem efficiently, or how to train efficient neural networks? This book will teach you just that. You will start by getting a quick overview of the popular TensorFlow library and how it is used to train different neural networks. You will get a thorough understanding of the fundamentals and basic math for neural networks and why TensorFlow is a popular choice Then, you will proceed to implement a simple feed forward neural network. Next you will master optimization techniques and algorithms for neural networks using TensorFlow. Further, you will learn to implement some more complex types of neural networks such as convolutional neural networks, recurrent neural networks, and Deep Belief Networks. In the course of the book, you will be working on real-world datasets to get a hands-on understanding of neural network programming. You will also get to train generative models and will learn the applications of autoencoders. By the end of this book, you will have a fair understanding of how you can leverage the power of TensorFlow to train neural networks of varying complexities, without any hassle. While you are learning about various neural network implementations you will learn the underlying mathematics and linear algebra and how they map to the appropriate TensorFlow constructs.

Who is this book for?

This book is meant for developers with a statistical background who want to work with neural networks. Though we will be using TensorFlow as the underlying library for neural networks, book can be used as a generic resource to bridge the gap between the math and the implementation of deep learning. If you have some understanding of Tensorflow and Python and want to learn what happens at a level lower than the plain API syntax, this book is for you.

What you will learn

  • • Learn Linear Algebra and mathematics behind neural network.
  • • Dive deep into Neural networks from the basic to advanced concepts like CNN, RNN Deep Belief Networks, Deep Feedforward Networks.
  • • Explore Optimization techniques for solving problems like Local minima, Global minima, Saddle points
  • • Learn through real world examples like Sentiment Analysis.
  • • Train different types of generative models and explore autoencoders.
  • • Explore TensorFlow as an example of deep learning implementation.
Estimated delivery fee Deliver to Canada

Economy delivery 10 - 13 business days

Can$24.95

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Nov 10, 2017
Length: 274 pages
Edition : 1st
Language : English
ISBN-13 : 9781788390392
Vendor :
Google
Category :
Languages :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Canada

Economy delivery 10 - 13 business days

Can$24.95

Product Details

Publication date : Nov 10, 2017
Length: 274 pages
Edition : 1st
Language : English
ISBN-13 : 9781788390392
Vendor :
Google
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Can$6 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Can$6 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Can$ 167.97
TensorFlow 1.x Deep Learning Cookbook
Can$61.99
Neural Network Programming with TensorFlow
Can$55.99
Hands-On Deep Learning with TensorFlow
Can$49.99
Total Can$ 167.97 Stars icon
Banner background image

Table of Contents

10 Chapters
Maths for Neural Networks Chevron down icon Chevron up icon
Deep Feedforward Networks Chevron down icon Chevron up icon
Optimization for Neural Networks Chevron down icon Chevron up icon
Convolutional Neural Networks Chevron down icon Chevron up icon
Recurrent Neural Networks Chevron down icon Chevron up icon
Generative Models Chevron down icon Chevron up icon
Deep Belief Networking Chevron down icon Chevron up icon
Autoencoders Chevron down icon Chevron up icon
Research in Neural Networks Chevron down icon Chevron up icon
Getting started with TensorFlow Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Half star icon Empty star icon Empty star icon Empty star icon 1.5
(2 Ratings)
5 star 0%
4 star 0%
3 star 0%
2 star 50%
1 star 50%
Anurag Thakur May 09, 2018
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
I went through first two chapters till now...In the beginning they have given some links to download the code..I think that's enough as book don't have anything more.
Amazon Verified review Amazon
Dimitri Shvorob Mar 13, 2018
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Wishing to learn about TensorFlow, I decided to survey TF books available from Amazon, and pick one or two for further study. I excluded self-published offerings, and ended up with this longish list, dominated by Packt titles:"Machine Learning with TensorFlow" by Shukla, published by Manning in 2018-02, 272 pp, $43"Mastering TensorFlow 1.x" by Fandango, Packt, 2018-01, 474 pp, $35"Pro Deep Learning with TensorFlow" by Pattanayak, Apress, 2017-12, 398 pp, $37"TensorFlow 1.x Deep Learning Cookbook" by Gulli and Kapoor, Packt, 2017-12, 536 pp, $32"Neural Network Programming with TensorFlow" by Ghotra and Dua, Packt, 2017-11, 274 pp, $40"Predictive Analytics with TensorFlow" by Karim, Packt, 2017-11, 522 pp, $50"Machine Learning with TensorFlow 1.x" by Hua and Azeem, Packt, 2017-11, 304 pp, $39"Learning TensorFlow" by Hope and Resheff, O'Reilly, 2017-08, 242 pp, $25"Hands-On Deep Learning with TensorFlow" by Van Boxel, Packt, 2017-07, 174 pp, $35"Deep Learning with TensorFlow" by Zaccone, Karim, Menshawy, Packt, 2017-04, 320 pp, $50"TensorFlow Machine Learning Cookbook" by McClure, Packt, 2017-02, 370 pp, $30"Building Machine Learning Projects with TensorFlow" by Bonnin, Packt, 2016-11, 291 pp, $35"Getting Started with TensorFlow" by Zaccone, Packt, 2016-07, 180 pp, $35I reviewed the doc on tensorflow.org - including the doc for older releases - then started looking at books. One week later, I am still not done, but have winnowed out some options. The books by Van Boxel and Zaccone are out - these are brief (and not up-to-date) introductions, costing as much as more substantial titles. The books by Karim, and by Zacone and Karim, are out as a matter of principle, or of my personal distaste for plagiarism. The book by Bonnin offers unremarkable content spoiled by remarkably poor English and a myriad of typos - out."Neural Network Programming with TensorFlow" is the next casualty. I have read only a few pages, and, oh boy, I don't want to go further - it's really poor, I-am-concerned-about-authors'-sanity poor. (Yes, I am talking about that "Environment setup" section in the middle of "Linear algebra" (!) chapter. The only other pages I have glimpsed were the table of contents, and it resembled Karim's). Call me trigger-happy, but I believe in cutting losses early. Moving on…
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela