Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with Java Cookbook

You're reading from   Natural Language Processing with Java Cookbook Over 70 recipes to create linguistic and language translation applications using Java libraries

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789801156
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Richard M Reese Richard M Reese
Author Profile Icon Richard M Reese
Richard M Reese
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Preparing Text for Analysis and Tokenization FREE CHAPTER 2. Isolating Sentences within a Document 3. Performing Name Entity Recognition 4. Detecting POS Using Neural Networks 5. Performing Text Classification 6. Finding Relationships within Text 7. Language Identification and Translation 8. Identifying Semantic Similarities within Text 9. Common Text Processing and Generation Tasks 10. Extracting Data for Use in NLP Analysis 11. Creating a Chatbot 12. Installation and Configuration 13. Other Books You May Enjoy

Extracting Data for Use in NLP Analysis

Most NLP tasks are concerned with the analysis of data. In this chapter, we will illustrate several approaches to acquiring data from multiple sources. This includes processing data from an HTML page and PDF, Word, and Excel documents. Each of these techniques involves connecting to a data source and then extracting the data from that source. For complex documents, such as Wikipedia articles or a Word document, we will be faced with choices in terms of what type of data we want to retrieve.

For example, with an HTML document, we may be interested in the actual text and possibly the HTML markup. For a document containing a table of contents, we may want to process that information separately. To extract text form a Wikipedia article, we treat it as an HTML document.

These recipes are an introduction to the topic. Most of these data sources...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image