Feature engineering plays a vital role in making machine learning algorithms work and, if carried out properly, it enhances the predictive ability of machine learning algorithms. In other words, feature engineering is the process of extracting existing features or creating new features from the raw data using domain knowledge, the context of the problem, or specialized techniques that result in more accurate predictive models. This is an activity where domain knowledge and creativity play a very important role. This is an important process, which can significantly improve the performance of our predictive models. The more context you have about a problem, the better your ability to create new and useful features. Basically, the feature engineering process converts the features into input values that algorithms can understand.
There are various ways of implementing...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine