Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R, Second Edition

You're reading from   Mastering Predictive Analytics with R, Second Edition Machine learning techniques for advanced models

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121393
Length 448 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
James D. Miller James D. Miller
Author Profile Icon James D. Miller
James D. Miller
Rui Miguel Forte Rui Miguel Forte
Author Profile Icon Rui Miguel Forte
Rui Miguel Forte
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Gearing Up for Predictive Modeling FREE CHAPTER 2. Tidying Data and Measuring Performance 3. Linear Regression 4. Generalized Linear Models 5. Neural Networks 6. Support Vector Machines 7. Tree-Based Methods 8. Dimensionality Reduction 9. Ensemble Methods 10. Probabilistic Graphical Models 11. Topic Modeling 12. Recommendation Systems 13. Scaling Up 14. Deep Learning Index

Predicting complex skill learning with boosting

We will revisit our Skillcraft dataset in this section--this time in the context of another boosting technique known as stochastic gradient boosting. The main characteristic of this method is that in every iteration of boosting, we compute a gradient in the direction of the errors that are made by the model trained in the current iteration.

This gradient is then used in order to guide the construction of the model that will be added in the next iteration. Stochastic gradient boosting is commonly used with decision trees, and a good implementation in R can be found in the gbm package, which provides us with the gbm() function. For regression problems, we need to specify the distribution parameter to be gaussian. In addition, we can specify the number of trees we want to build (which is equivalent to the number of iterations of boosting) via the n.trees parameter, as well as a shrinkage parameter that is used to control the algorithm's learning...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime