Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R, Second Edition

You're reading from   Mastering Predictive Analytics with R, Second Edition Machine learning techniques for advanced models

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121393
Length 448 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
James D. Miller James D. Miller
Author Profile Icon James D. Miller
James D. Miller
Rui Miguel Forte Rui Miguel Forte
Author Profile Icon Rui Miguel Forte
Rui Miguel Forte
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Gearing Up for Predictive Modeling FREE CHAPTER 2. Tidying Data and Measuring Performance 3. Linear Regression 4. Generalized Linear Models 5. Neural Networks 6. Support Vector Machines 7. Tree-Based Methods 8. Dimensionality Reduction 9. Ensemble Methods 10. Probabilistic Graphical Models 11. Topic Modeling 12. Recommendation Systems 13. Scaling Up 14. Deep Learning Index

Algorithms for training decision trees


Now that we have understood how a decision tree works, we'll want to address the issue of how we can train one using some data. There are several algorithms that have been proposed to build decision trees, and in this section we will present a few of the most well-known. One thing we should bear in mind is that, whatever tree-building algorithm we choose, we will have to answer four fundamental questions:

  • For every node (including the root node), how should we choose the input feature to split on and, given this feature, what is the value of the split point?

  • How do we decide whether a node should become a leaf node or if we should make another split point?

  • How deep should our tree be allowed to become?

  • Once we arrive at a leaf node, what value should we predict?

Note

A great introduction to decision trees is Chapter 3 of Machine Learning, Tom Mitchell. This book was probably the first comprehensive introduction to machine learning and is well worth reading...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime