Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Concurrency in Python

You're reading from   Mastering Concurrency in Python Create faster programs using concurrency, asynchronous, multithreading, and parallel programming

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789343052
Length 446 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Quan Nguyen Quan Nguyen
Author Profile Icon Quan Nguyen
Quan Nguyen
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Advanced Introduction to Concurrent and Parallel Programming FREE CHAPTER 2. Amdahl's Law 3. Working with Threads in Python 4. Using the with Statement in Threads 5. Concurrent Web Requests 6. Working with Processes in Python 7. Reduction Operators in Processes 8. Concurrent Image Processing 9. Introduction to Asynchronous Programming 10. Implementing Asynchronous Programming in Python 11. Building Communication Channels with asyncio 12. Deadlocks 13. Starvation 14. Race Conditions 15. The Global Interpreter Lock 16. Designing Lock-Based and Mutex-Free Concurrent Data Structures 17. Memory Models and Operations on Atomic Types 18. Building a Server from Scratch 19. Testing, Debugging, and Scheduling Concurrent Applications 20. Assessments 21. Other Books You May Enjoy

Formula and interpretation

Before we get into the formula for Amdahl's Law and its implications, let's explore the concept of speedup, through some brief analysis. Let's assume that there are N workers working on a given job that is fully parallelizable—that is, the job can be perfectly divided into N equal sections. This means that N workers working together to complete the job will only take 1/N of the time it takes one worker to complete the same job.

However, most computer programs are not 100% parallelizable: some parts of a program might be inherently sequential, while others are broken up into parallel tasks.

The formula for Amdahl's Law

Now, let B denote the fraction of the program that is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image