Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Solutions

You're reading from   Machine Learning Solutions Expert techniques to tackle complex machine learning problems using Python

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788390040
Length 566 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jalaj Thanaki Jalaj Thanaki
Author Profile Icon Jalaj Thanaki
Jalaj Thanaki
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Machine Learning Solutions
Foreword
Contributors
Preface
1. Credit Risk Modeling FREE CHAPTER 2. Stock Market Price Prediction 3. Customer Analytics 4. Recommendation Systems for E-Commerce 5. Sentiment Analysis 6. Job Recommendation Engine 7. Text Summarization 8. Developing Chatbots 9. Building a Real-Time Object Recognition App 10. Face Recognition and Face Emotion Recognition 11. Building Gaming Bot List of Cheat Sheets Strategy for Wining Hackathons Index

Training the baseline model


In this section, we will perform actual training using the following ML algorithms. This step is time-consuming as it needs more computation power. We use 75% of the training dataset for actual training and 25% of the dataset for testing in order to measure the training accuracy.

You can find the code snippet in the following figure:

Figure 1.52: Code snippet for performing training

In the preceding code snippet, you can see that we performed the actual training operation using the fit() function from the scikit-learn library. This function uses the given parameter and trains the model by taking the input of the target data attribute and other feature columns.

Once you are done with this step, you'll see that our different ML algorithms generate different trained models. Now it's time to check how good our trained model is when it comes to prediction. There are certain techniques that we can use on 25% of the dataset. In the next section, we will understand these techniques.

You have been reading a chapter from
Machine Learning Solutions
Published in: Apr 2018
Publisher: Packt
ISBN-13: 9781788390040
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image