Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization FREE CHAPTER 2. Applying Machine Learning to Structured Data 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

Heuristic, feature-based, and E2E models


Before we dive into developing models to detect fraud, let's take a second to pause and ponder over the different kinds of models we could build.

  • A heuristic-based model is a simple "rule of thumb" developed purely by humans. Usually, the heuristic model stems from having an expert knowledge of the problem.

  • A feature-based model relies heavily on humans modifying the data to create new and meaningful features, which are then fed into a (simple) machine learning algorithm. This approach mixes expert knowledge with learning from data.

  • An E2E model learns purely from raw data. No human expertise is used, and the model learns everything directly from observations.

In our case, a heuristic-based model could be created to mark all transactions with the TRANSFER transaction type and an amount over $200,000 as fraudulent. Heuristic-based models have the advantage that they are both fast to develop and easy to implement; however, this comes with a pay-off, their...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image