Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Machine Learning for Finance
Machine Learning for Finance

Machine Learning for Finance: Principles and practice for financial insiders

Arrow left icon
Profile Icon James Le Profile Icon Jannes Klaas
Arrow right icon
Can$12.99 Can$44.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.1 (59 Ratings)
eBook May 2019 456 pages 1st Edition
eBook
Can$12.99 Can$44.99
Paperback
Can$55.99
Subscription
Free Trial
Arrow left icon
Profile Icon James Le Profile Icon Jannes Klaas
Arrow right icon
Can$12.99 Can$44.99
Full star icon Full star icon Full star icon Full star icon Half star icon 4.1 (59 Ratings)
eBook May 2019 456 pages 1st Edition
eBook
Can$12.99 Can$44.99
Paperback
Can$55.99
Subscription
Free Trial
eBook
Can$12.99 Can$44.99
Paperback
Can$55.99
Subscription
Free Trial

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Machine Learning for Finance

Chapter 1. Neural Networks and Gradient-Based Optimization

The financial services industry is fundamentally an information processing industry. An investment fund processes information in order to evaluate investments, an insurance company processes information to price their insurances, while a retail bank will process information in order to decide which products to offer to which customers. It is, therefore, no accident that the financial industry was an early adopter of computers.

The first stock ticker was the printing telegraph, which was invented back in 1867. The first mechanical adding machine, which was directly targeted at the finance industry, was patented in 1885. Then in 1971, the automatic teller banking machine, which allowed customers to withdraw cash using a plastic card, was patented. That same year, the first electronic stock exchange, the NASDAQ, opened its doors, and 11 years later, in 1982, the first Bloomberg Terminal was installed. The reason for the happy marriage between the finance sector and computers is that success in the industry, especially in investing, is often tied to you having an information advantage.

In the early days of Wall Street, the legends of the gilded age made brazen use of private information. Jay Gould, for example, one of the richest men of his time, placed a mole inside the US government. The mole was to give notice of government gold sales and through that, tried to influence President Ulysses S. Grant as well as his secretary. Toward the end of the 1930s, the SEC and CFTC stood between investors and such information advantages.

As information advantages ceased to be a reliable source of above-market performance, clever financial modeling took its place. The term hedge fund was coined back in 1949, the Harry Markowitz model was published in 1953, and in 1973, the Black-Scholes formula was first published. Since then, the field has made much progress and has developed a wide range of financial products. However, as knowledge of these models becomes more widespread, the returns on using them diminish.

When we look at the financial industry coupled with modern computing, it's clear that the information advantage is back. This time not in the form of insider information and sleazy deals, but instead is coming from an automated analysis of the vast amount of public information that's out there.

Today's fund managers have access to more information than their forbearers could ever dream of. However, this is not useful on its own. For example, let's look at news reports. You can get them via the internet and they are easy to access, but to make use of them, a computer would have to read, understand, and contextualize them. The computer would have to know which company an article is about, whether it is good news or bad news that's being reported, and whether we can learn something about the relationship between this company and another company mentioned in the article. Those are just a couple of examples of contextualizing the story. Firms that master sourcing such alternative data, as it is often called, will often have an advantage.

But it does not stop there. Financial professionals are expensive people who frequently make six- to seven-figure salaries and occupy office space in some of the most expensive real estate in the world. This is justified as many financial professionals are smart, well-educated, and hard-working people that are scarce and for which there is a high demand. Because of this, it's thus in the interest of any company to maximize the productivity of these individuals. By getting more bang for the buck from the best employees, they will allow companies to offer their products cheaper or in greater variety.

Passive investing through exchange-traded funds, for instance, requires little management for large sums of money. Fees for passive investment vehicles, such as funds that just mirror the S&P 500, are often well below one percent. But with the rise of modern computing technology, firms are now able to increase the productivity of their money managers and thus reduce their fees to stay competitive.

Using the AWS deep learning AMI

Amazon Web Services (AWS) provides an easy-to-use, preconfigured way to run deep learning in the cloud.

Visit https://aws.amazon.com/machine-learning/amis/ for instructions on how to set up an Amazon Machine Image (AMI). While AMIs are paid, they can run longer than Kaggle kernels. So, for big projects, it might be worth using an AMI instead of a kernel.

To run the notebooks for this book on an AMI, first set up the AMI, then download the notebooks from GitHub, and then upload them to your AMI. You will have to download the data from Kaggle as well. See the Using data locally section for instructions.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore advances in machine learning and how to put them to work in financial industries
  • Gain expert insights into how machine learning works, with an emphasis on financial applications
  • Discover advanced machine learning approaches, including neural networks, GANs, and reinforcement learning

Description

Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including insurance, transactions, and lending. This book explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself. The book is based on Jannes Klaas’ experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on advanced machine learning concepts and ideas that can be applied in a wide variety of ways. The book systematically explains how machine learning works on structured data, text, images, and time series. You'll cover generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. Later chapters will discuss how to fight bias in machine learning. The book ends with an exploration of Bayesian inference and probabilistic programming.

Who is this book for?

This book is ideal for readers who understand math and Python, and want to adopt machine learning in financial applications. The book assumes college-level knowledge of math and statistics.

What you will learn

  • Apply machine learning to structured data, natural language, photographs, and written text
  • Understand how machine learning can help you detect fraud, forecast financial trends, analyze customer sentiments, and more
  • Implement heuristic baselines, time series, generative models, and reinforcement learning in Python, scikit-learn, Keras, and TensorFlow
  • Delve into neural networks, and examine the uses of GANs and reinforcement learning
  • Debug machine learning applications and prepare them for launch
  • Address bias and privacy concerns in machine learning

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : May 30, 2019
Length: 456 pages
Edition : 1st
Language : English
ISBN-13 : 9781789134698
Category :
Languages :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : May 30, 2019
Length: 456 pages
Edition : 1st
Language : English
ISBN-13 : 9781789134698
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Can$6 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Can$6 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Can$ 195.97
Hands-On Machine Learning for Algorithmic Trading
Can$83.99
Mastering Python for Finance
Can$55.99
Machine Learning for Finance
Can$55.99
Total Can$ 195.97 Stars icon
Banner background image

Table of Contents

10 Chapters
Neural Networks and Gradient-Based Optimization Chevron down icon Chevron up icon
Applying Machine Learning to Structured Data Chevron down icon Chevron up icon
Utilizing Computer Vision Chevron down icon Chevron up icon
Understanding Time Series Chevron down icon Chevron up icon
Parsing Textual Data with Natural Language Processing Chevron down icon Chevron up icon
Using Generative Models Chevron down icon Chevron up icon
Reinforcement Learning for Financial Markets Chevron down icon Chevron up icon
Privacy, Debugging, and Launching Your Products Chevron down icon Chevron up icon
Fighting Bias Chevron down icon Chevron up icon
Bayesian Inference and Probabilistic Programming Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.1
(59 Ratings)
5 star 59.3%
4 star 15.3%
3 star 8.5%
2 star 5.1%
1 star 11.9%
Filter icon Filter
Top Reviews

Filter reviews by




Tye M. Brown Dec 14, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Udemy Verified review Udemy
Jesus Encinas Castillo Sep 24, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Udemy Verified review Udemy
Hassan Alam Apr 20, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Udemy Verified review Udemy
Mark Heffernan May 29, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Udemy Verified review Udemy
Kenneth E. Mayer Jul 18, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
While going over supervised learning and unsupervised learning, the book also covers NLP with textual data and time series methods. The book is long but that is because it has many diagrams and much code.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.