Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Automation with TPOT

You're reading from   Machine Learning Automation with TPOT Build, validate, and deploy fully automated machine learning models with Python

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781800567887
Length 270 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dario Radečić Dario Radečić
Author Profile Icon Dario Radečić
Dario Radečić
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Introducing Machine Learning and the Idea of Automation
2. Chapter 1: Machine Learning and the Idea of Automation FREE CHAPTER 3. Section 2: TPOT – Practical Classification and Regression
4. Chapter 2: Deep Dive into TPOT 5. Chapter 3: Exploring Regression with TPOT 6. Chapter 4: Exploring Classification with TPOT 7. Chapter 5: Parallel Training with TPOT and Dask 8. Section 3: Advanced Examples and Neural Networks in TPOT
9. Chapter 6: Getting Started with Deep Learning: Crash Course in Neural Networks 10. Chapter 7: Neural Network Classifier with TPOT 11. Chapter 8: TPOT Model Deployment 12. Chapter 9: Using the Deployed TPOT Model in Production 13. Other Books You May Enjoy

Making predictions in a GUI environment

Welcome to the last section of the book. This section will tie our simple web application to an already-deployed machine learning API. This closely resembles a production environment, where you have one or more machine learning models deployed, and the application development team wants to use them in their application. The only difference is that you're both the data science and application development team.

Once again, we'll have to make a couple of changes to the application structure:

  1. Let's start with the simpler part. Inside the root directory, create a Python file called predictor.py. This file will hold a single function that implements the logic discussed at the beginning of this chapter when we made predictions in the notebook environment.

    Put simply, this function has to make a POST request to the API and return a response in JSON format.

    Here's the entire code snippet for the file:

    import os
    import json...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image