Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming

You're reading from   Linux Kernel Programming A comprehensive and practical guide to kernel internals, writing modules, and kernel synchronization

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781803232225
Length 826 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Linux Kernel Programming – A Quick Introduction 2. Building the 6.x Linux Kernel from Source – Part 1 FREE CHAPTER 3. Building the 6.x Linux Kernel from Source – Part 2 4. Writing Your First Kernel Module – Part 1 5. Writing Your First Kernel Module – Part 2 6. Kernel Internals Essentials – Processes and Threads 7. Memory Management Internals – Essentials 8. Kernel Memory Allocation for Module Authors – Part 1 9. Kernel Memory Allocation for Module Authors – Part 2 10. The CPU Scheduler – Part 1 11. The CPU Scheduler – Part 2 12. Kernel Synchronization – Part 1 13. Kernel Synchronization – Part 2 14. Other Books You May Enjoy
15. Index

Memory reclaim – a key kernel housekeeping task

As you will be aware, the kernel tries, for optimal performance, to keep the working set of memory pages as high up as possible in the memory pyramid (or hierarchy).

The so-called memory pyramid (or memory hierarchy) on a system consists of (in order, from smallest size but fastest speed to largest size but slowest speed): CPU registers, CPU caches (LI, L2, L3, ...), RAM, and swap (raw disk/flash/SSD partition). In the following discussion, we ignore CPU registers as their size is minuscule.

In a modern processor, as code executes and data is worked upon, the processor uses its hardware caches (L1, L2, and so on) to hold the current working set of pages within its multilevel CPU instruction and data caches. But of course, CPU cache memory is very limited, thus it will soon run out, causing the memory to spill over into the next hierarchical level – RAM. On modern systems, even many embedded ones, there...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime