Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming

You're reading from  Linux Kernel Programming

Product type Book
Published in Mar 2021
Publisher Packt
ISBN-13 9781789953435
Pages 754 pages
Edition 1st Edition
Languages
Author (1):
Kaiwan N. Billimoria Kaiwan N. Billimoria
Profile icon Kaiwan N. Billimoria
Toc

Table of Contents (19) Chapters close

Preface 1. Section 1: The Basics
2. Kernel Workspace Setup 3. Building the 5.x Linux Kernel from Source - Part 1 4. Building the 5.x Linux Kernel from Source - Part 2 5. Writing Your First Kernel Module - LKMs Part 1 6. Writing Your First Kernel Module - LKMs Part 2 7. Section 2: Understanding and Working with the Kernel
8. Kernel Internals Essentials - Processes and Threads 9. Memory Management Internals - Essentials 10. Kernel Memory Allocation for Module Authors - Part 1 11. Kernel Memory Allocation for Module Authors - Part 2 12. The CPU Scheduler - Part 1 13. The CPU Scheduler - Part 2 14. Section 3: Delving Deeper
15. Kernel Synchronization - Part 1 16. Kernel Synchronization - Part 2 17. About Packt 18. Other Books You May Enjoy

Summarizing the current situation

Okay, great, let's now summarize our learning and findings from our preceding sample run of the countem.sh script:

  • Task structures:
    • Every thread alive (user or kernel) has a corresponding task structure (struct task_struct) in the kernel; this is how the kernel tracks it and all its attributes are stored here (you'll learn more in the Understanding and accessing the kernel task structure section)
    • With respect to our sample run of our ch6/countem.sh script:
      • As there are a total of 1,234 threads (both user and kernel) alive on the system, this implies a total of 1,234 task (metadata) structures in kernel memory (in the code, struct task_struct), of which we can say the following:
      • 1,053 of these task structures represent user threads.
      • The remaining 181 task structures represent kernel threads.
  • Stacks:
    • Every user space thread has two stacks:
      • A user mode stack (is in play when the thread executes user-mode...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}