Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming

You're reading from  Linux Kernel Programming

Product type Book
Published in Mar 2021
Publisher Packt
ISBN-13 9781789953435
Pages 754 pages
Edition 1st Edition
Languages
Author (1):
Kaiwan N. Billimoria Kaiwan N. Billimoria
Profile icon Kaiwan N. Billimoria
Toc

Table of Contents (19) Chapters close

Preface 1. Section 1: The Basics
2. Kernel Workspace Setup 3. Building the 5.x Linux Kernel from Source - Part 1 4. Building the 5.x Linux Kernel from Source - Part 2 5. Writing Your First Kernel Module - LKMs Part 1 6. Writing Your First Kernel Module - LKMs Part 2 7. Section 2: Understanding and Working with the Kernel
8. Kernel Internals Essentials - Processes and Threads 9. Memory Management Internals - Essentials 10. Kernel Memory Allocation for Module Authors - Part 1 11. Kernel Memory Allocation for Module Authors - Part 2 12. The CPU Scheduler - Part 1 13. The CPU Scheduler - Part 2 14. Section 3: Delving Deeper
15. Kernel Synchronization - Part 1 16. Kernel Synchronization - Part 2 17. About Packt 18. Other Books You May Enjoy

Per-CPU usage within the kernel

Per-CPU variables are quite heavily used within the Linux kernel; one interesting case is in the implementation of the current macro on the x86 architecture (we covered using the current macro in Chapter 6, Kernel Internals Essentials – Processes and Threads, in the Accessing the task structure with current section). The fact is that current is looked up (and set) every so often; keeping it as a per-CPU ensures that we keep its access lock-free! Here's the code that implements it:

// arch/x86/include/asm/current.h
[ ... ]
DECLARE_PER_CPU(struct task_struct *, current_task);
static __always_inline struct task_struct *get_current(void)
{
return this_cpu_read_stable(current_task);
}
#define current get_current()

The DECLARE_PER_CPU() macro declares the variable named current_task as a per-CPU variable of type struct task_struct *. The get_current() inline function invokes the this_cpu_read_stable() helper on this per-CPU variable...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}