Search icon CANCEL
Subscription
0
Cart icon
Cart
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming

You're reading from  Linux Kernel Programming

Product type Book
Published in Mar 2021
Publisher Packt
ISBN-13 9781789953435
Pages 754 pages
Edition 1st Edition
Languages
Author (1):
Kaiwan N. Billimoria Kaiwan N. Billimoria
Profile icon Kaiwan N. Billimoria
Toc

Table of Contents (19) Chapters close

Preface 1. Section 1: The Basics
2. Kernel Workspace Setup 3. Building the 5.x Linux Kernel from Source - Part 1 4. Building the 5.x Linux Kernel from Source - Part 2 5. Writing Your First Kernel Module - LKMs Part 1 6. Writing Your First Kernel Module - LKMs Part 2 7. Section 2: Understanding and Working with the Kernel
8. Kernel Internals Essentials - Processes and Threads 9. Memory Management Internals - Essentials 10. Kernel Memory Allocation for Module Authors - Part 1 11. Kernel Memory Allocation for Module Authors - Part 2 12. The CPU Scheduler - Part 1 13. The CPU Scheduler - Part 2 14. Section 3: Delving Deeper
15. Kernel Synchronization - Part 1 16. Kernel Synchronization - Part 2 17. About Packt 18. Other Books You May Enjoy

What is the KSE on Linux?

As you learned in Chapter 6, Kernel Internals Essentials – Processes and Threads, in the Organizing processes, threads, and their stacks – user and kernel space section, every process – in fact, every thread alive on the system – is bestowed with a task structure (struct task_struct) and both a user-mode as well as a kernel-mode stack.

Here, the key question to ask is: when scheduling is performed, what object does it act upon, in other words, what is the Kernel Schedulable Entity, the KSE? On Linux, the KSE is a thread, not a process (of course, every process contains a minimum of one thread). Thus, the thread is the granularity level at which scheduling is performed.

An example will help explain this: if we have a hypothetical situation where we have one CPU core and 10 user space processes, consisting of three threads each, plus five kernel threads, then we have a total of (10 x 3) + 5, which equals 35 threads. Each of them...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $15.99/month. Cancel anytime}