Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Geospatial Analysis with Python

You're reading from   Learning Geospatial Analysis with Python Understand GIS fundamentals and perform remote sensing data analysis using Python 3.7

Arrow left icon
Product type Paperback
Published in Sep 2019
Publisher
ISBN-13 9781789959277
Length 456 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joel Lawhead Joel Lawhead
Author Profile Icon Joel Lawhead
Joel Lawhead
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: The History and the Present of the Industry FREE CHAPTER
2. Learning about Geospatial Analysis with Python 3. Learning Geospatial Data 4. The Geospatial Technology Landscape 5. Section 2: Geospatial Analysis Concepts
6. Geospatial Python Toolbox 7. Python and Geographic Information Systems 8. Python and Remote Sensing 9. Python and Elevation Data 10. Section 3: Practical Geospatial Processing Techniques
11. Advanced Geospatial Python Modeling 12. Real-Time Data 13. Putting It All Together 14. Other Books You May Enjoy

What are overviews?

Overview data is most commonly found in raster formats. Overviews are resampled and lower-resolution versions of raster datasets that provide thumbnail views or simply faster-loading image views at different map scales. They are also known as pyramids, and the process of creating them is known as pyramiding an image. These overviews are usually preprocessed and stored with the full resolution data either embedded with the file or in a separate file.

The compromise of this convenience is that the additional images add to the overall file size of the dataset; however, they speed up image viewers. Vector data also has a concept of overviews, usually to give a dataset geographic context in an overview map. However, because vector data is scalable, reduced size overviews are usually created on the fly by software using a generalization operation, as mentioned in...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime