Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learn TensorFlow Enterprise

You're reading from   Learn TensorFlow Enterprise Build, manage, and scale machine learning workloads seamlessly using Google's TensorFlow Enterprise

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781800209145
Length 314 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
KC Tung KC Tung
Author Profile Icon KC Tung
KC Tung
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1 – TensorFlow Enterprise Services and Features
2. Chapter 1: Overview of TensorFlow Enterprise FREE CHAPTER 3. Chapter 2: Running TensorFlow Enterprise in Google AI Platform 4. Section 2 – Data Preprocessing and Modeling
5. Chapter 3: Data Preparation and Manipulation Techniques 6. Chapter 4: Reusable Models and Scalable Data Pipelines 7. Section 3 – Scaling and Tuning ML Works
8. Chapter 5: Training at Scale 9. Chapter 6: Hyperparameter Tuning 10. Section 4 – Model Optimization and Deployment
11. Chapter 7: Model Optimization 12. Chapter 8: Best Practices for Model Training and Performance 13. Chapter 9: Serving a TensorFlow Model 14. Other Books You May Enjoy

Downloading TensorFlow Serving Docker images

Once the Docker engine is up and running, you are ready to perform the following steps:

  1. You may pull the latest TFS Docker image with this Docker command:
    docker pull tensorflow/serving
  2. This is now our base image. In order to add our model on top of this image, we need to run this base image first:
    docker run -d --name serv_base_img tensorflow/serving

In the preceding command, we invoked the tensorflow/serving image and now it is running as a Docker container. We also name this container serv_base_img.

Creating a new image with the model and serving it

Let's now take a look at the file directory here. For this example, the directory structure is as shown in the following figure:

Figure 9.2 – Directory structure for creating a custom Docker container

We will execute the following commands from the same directory as Tensorflow_Serving.ipynb.

After we have the TFS base Docker...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime