Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Java: Data Science Made Easy

You're reading from   Java: Data Science Made Easy Data collection, processing, analysis, and more

Arrow left icon
Product type Course
Published in Jul 2017
Publisher Packt
ISBN-13 9781788475655
Length 734 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Alexey Grigorev Alexey Grigorev
Author Profile Icon Alexey Grigorev
Alexey Grigorev
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Arrow right icon
View More author details
Toc

Table of Contents (29) Chapters Close

Title Page
Credits
Preface
1. Module 1 FREE CHAPTER
2. Getting Started with Data Science 3. Data Acquisition 4. Data Cleaning 5. Data Visualization 6. Statistical Data Analysis Techniques 7. Machine Learning 8. Neural Networks 9. Deep Learning 10. Text Analysis 11. Visual and Audio Analysis 12. Visual and Audio Analysis 13. Mathematical and Parallel Techniques for Data Analysis 14. Bringing It All Together 15. Module 2
16. Data Science Using Java 17. Data Processing Toolbox 18. Exploratory Data Analysis 19. Supervised Learning - Classification and Regression 20. Unsupervised Learning - Clustering and Dimensionality Reduction 21. Working with Text - Natural Language Processing and Information Retrieval 22. Extreme Gradient Boosting 23. Deep Learning with DeepLearning4J 24. Scaling Data Science 25. Deploying Data Science Models 26. Bibliography

Restricted Boltzmann Machines


RBM is often used as part of a multi-layer deep belief network. The output of the RBM is used as an input to another layer. The use of the RBM is repeated until the final layer is reached.

Note

Deep Belief Networks (DBNs) consist of several RBMs stacked together. Each hidden layer provides the input for the subsequent layer. Within each layer, the nodes cannot communicate laterally and it becomes essentially a network of other single-layer networks. DBNs are especially helpful for classifying, clustering, and recognizing image data.

The term, continuous restricted Boltzmann machine, refers an RBM that uses values other than integers. Input data is normalized to values between zero and one.

Each node of the input layer is connected to each node of the second layer. No nodes of the same layer are connected to each other. That is, there is no intra-layer communication. This is what restricted means.

The number of input nodes for the visible layer is dependent on the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image