Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Haskell Data Analysis cookbook

You're reading from   Haskell Data Analysis cookbook Explore intuitive data analysis techniques and powerful machine learning methods using over 130 practical recipes

Arrow left icon
Product type Paperback
Published in Jun 2014
Publisher
ISBN-13 9781783286331
Length 334 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nishant Shukla Nishant Shukla
Author Profile Icon Nishant Shukla
Nishant Shukla
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. The Hunt for Data FREE CHAPTER 2. Integrity and Inspection 3. The Science of Words 4. Data Hashing 5. The Dance with Trees 6. Graph Fundamentals 7. Statistics and Analysis 8. Clustering and Classification 9. Parallel and Concurrent Design 10. Real-time Data 11. Visualizing Data 12. Exporting and Presenting Index

Verifying the order property of a binary search tree


Given a binary tree, this recipe will cover how to verify if it actually satisfies the order property such that all elements in the left subtree are of lesser value, and that all values of the right subtree are of greater value.

Getting ready

We will be verifying whether or not the following tree is a binary search tree:

How to do it...

No imports are necessary for this recipe. Perform the following steps to find if the tree is a binary search tree:

  1. Define a data structure for a binary tree:

    data Tree a = Node { value  :: a
                       , left  :: (Tree a)
                       , right :: (Tree a)}
                | Null
        deriving (Eq, Show)
  2. Construct a tree based on the preceding diagram:

    someTree :: Tree Int
    
    someTree = root  
      where root = Node 0 n1 n4
            n1   = Node 1 n2 n3
            n2   = Node 2 Null Null
            n3   = Node 3 Null Null
            n4   = Node 4 Null Null
  3. Define the function to verify whether or not a tree obeys the binary...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image