Like the threading module, the multiprocessing module is also used to provide multitasking capabilities. The threading module is actually a bit deceptive: its implementation in Python is not actually for parallel processing, but instead for processing on a single core with time-sharing. The default Python implementation CPython, at interpreter level, is not thread safe. Whenever threads are used, there is a global interpreter lock (GIL) that is placed over the objects that are accessed within Python threads. This lock executes the threads in time-sharing manner, giving a small quantity of time to every thread, and thus there is no performance gain in our program. The multiprocessing module was developed, therefore, to provide parallel processing to the Python ecosystem. This decreases the execution time by spawning the load across multiple processor...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine