In this chapter, we got hands-on with an actor-critic architecture-based deep reinforcement learning agent, starting from the basics. We started with the introduction to policy gradient-based methods and walked through the step-by-step process of representing the objective function for the policy gradient optimization, understanding the likelihood ratio trick, and finally deriving the policy gradient theorem. We then looked at how the actor-critic architecture makes use of the policy gradient theorem and uses an actor component to represent the policy of the agent, and a critic component to represent the state/action/advantage value function, depending on the implementation of the architecture. With an intuitive understanding of the actor-critic architecture, we moved on to the A2C algorithm and discussed the six steps involved in it. We then discussed the n-step return...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine