Spectral normalization
Spectral normalization is an important method to stabilize GAN training and it has been used in a lot of recent state-of-the-art GANs. Unlike batch normalization or other normalization methods that normalize the activation, spectral normalization normalizes the weights instead. The aim of spectral normalization is to limit the growth of the weights, so the networks adhere to the 1-Lipschitz constraint. This has proved effective in stabilizing GAN training, as we learned in Chapter 3, Generative Adversarial Network.
We will revise WGANs to give us a better understanding of the idea behind spectral normalization. The WGAN discriminator (also known as the critic) needs to keep its prediction to small numbers to meet the 1-Lipschtiz constraint. WGANs do this by naively clipping the weights to the range of [-0.01, 0.01].
This is not a reliable method as we need to fine-tune the clipping range, which is a hyperparameter. It would be nice if there was a systematic...