Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Graph Neural Networks Using Python

You're reading from   Hands-On Graph Neural Networks Using Python Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch

Arrow left icon
Product type Paperback
Published in Apr 2023
Publisher Packt
ISBN-13 9781804617526
Length 354 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Maxime Labonne Maxime Labonne
Author Profile Icon Maxime Labonne
Maxime Labonne
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. Part 1: Introduction to Graph Learning
2. Chapter 1: Getting Started with Graph Learning FREE CHAPTER 3. Chapter 2: Graph Theory for Graph Neural Networks 4. Chapter 3: Creating Node Representations with DeepWalk 5. Part 2: Fundamentals
6. Chapter 4: Improving Embeddings with Biased Random Walks in Node2Vec 7. Chapter 5: Including Node Features with Vanilla Neural Networks 8. Chapter 6: Introducing Graph Convolutional Networks 9. Chapter 7: Graph Attention Networks 10. Part 3: Advanced Techniques
11. Chapter 8: Scaling Up Graph Neural Networks with GraphSAGE 12. Chapter 9: Defining Expressiveness for Graph Classification 13. Chapter 10: Predicting Links with Graph Neural Networks 14. Chapter 11: Generating Graphs Using Graph Neural Networks 15. Chapter 12: Learning from Heterogeneous Graphs 16. Chapter 13: Temporal Graph Neural Networks 17. Chapter 14: Explaining Graph Neural Networks 18. Part 4: Applications
19. Chapter 15: Forecasting Traffic Using A3T-GCN 20. Chapter 16: Detecting Anomalies Using Heterogeneous GNNs 21. Chapter 17: Building a Recommender System Using LightGCN 22. Chapter 18: Unlocking the Potential of Graph Neural Networks for Real-World Applications
23. Index 24. Other Books You May Enjoy

Inductive learning on protein-protein interactions

In GNNs, we distinguish two types of learning – transductive and inductive. They can be summarized as follows:

  • In inductive learning, the GNN only sees data from the training set during training. This is the typical supervised learning setting in machine learning. In this situation, labels are used to tune the GNN’s parameters.
  • In transductive learning, the GNN sees data from the training and test sets during training. However, it only learns data from the training set. In this situation, the labels are used for information diffusion.

The transductive situation should be familiar, since it is the only one we have covered so far. Indeed, you can see in the previous example that GraphSAGE makes predictions using the whole graph during training (self(batch.x, batch.edge_index)). We then mask part of these predictions to calculate the loss and train the model only using training data (criterion(out[batch...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime