Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Generative Adversarial Networks Cookbook
Generative Adversarial Networks Cookbook

Generative Adversarial Networks Cookbook: Over 100 recipes to build generative models using Python, TensorFlow, and Keras

Arrow left icon
Profile Icon Kalin
Arrow right icon
Can$44.98 Can$49.99
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3 (4 Ratings)
eBook Dec 2018 268 pages 1st Edition
eBook
Can$44.98 Can$49.99
Paperback
Can$61.99
Subscription
Free Trial
Arrow left icon
Profile Icon Kalin
Arrow right icon
Can$44.98 Can$49.99
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3 (4 Ratings)
eBook Dec 2018 268 pages 1st Edition
eBook
Can$44.98 Can$49.99
Paperback
Can$61.99
Subscription
Free Trial
eBook
Can$44.98 Can$49.99
Paperback
Can$61.99
Subscription
Free Trial

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Generative Adversarial Networks Cookbook

What Is a Generative Adversarial Network?

In this chapter, we'll cover the following recipes:

  • Generative and discriminative models
  • A neural network love story
  • Deep neural networks
  • Architecture structure basics
  • Basic building block- generator
  • Basic building block  loss functions
  • Training
  • GAN pieces come together in different ways
  • What does a GAN output?
  • Understanding the benefits of a GAN structure

Introduction

I'm sure you've heard of a neural network dreaming? Maybe you've heard that AI is coming for you? Well, I'm here to tell you that there's no need to worry just yet. A Neural Network dreaming isn't too far away from the truth though. Generative Adversarial Networks (GANs), represent a shift in architecture design for deep neural networks. This new architecture pits two or more neural networks against each other in adversarial training to produce generative models. Throughout this book, we'll focus on covering the basic implementation of this architecture and then focus on modern representations of this new architecture in the form of recipes.

GANs are a hot topic of research today in the field of deep learning. Popularity has soared with this architecture style, with it's ability to produce generative models that are typically hard to learn. There are a number of advantages to using this architecture: it generalizes with limited data, conceives new scenes from small datasets, and makes simulated data look more realistic. These are important topics in deep learning because many techniques today require large amounts of data. Using this new architecture, it's possible to drastically reduce the amount of data needed to complete these tasks. In extreme examples, these types of architectures can use 10% of the data needed for other types of deep learning problems.

By the end of this chapter, you'll have learned about the following concepts:

  • Do all GANs have the same architecture?
  • Are there any new concepts within the GAN architecture?
  • The basic construction of the GAN architecture in practice

Ready, set, go!

Generative and discriminative models

Machine learning (ML) and deep learning can be described by two terms: generative and discriminative modeling. When discussing the machine learning techniques that most people are familiar with, the thinking of a discriminative modeling technique, such as classification.

How to do it...

The difference between these two types of can be described by the following analogy:

  • Discriminative modeling: Observe paintings and determine the style of painting based on observations.

Here are a few steps that describe how we would do this in machine learning:

  1. First, we create a machine learning model that use convolutional layers or other learned features to understand the divisions in the data
  2. Next, we collect a dataset that has both a training set (60-90% of your data) and a validation dataset (10-40% of your data)
  3. Train the machine learning model using your data
  1.  Use this model to predict which datapoint belongs to a particular class - in our example, which painting belongs to which author
  • Generative modeling: Learn and reproduce paintings in various painters' styles and determine the painting style from the styles you learned.

Here are a few steps to describe a possible way to accomplish this type of modeling:

  1. Create a machine learning model that learns how to reproduce different painting styles
  2. Collect a training and validation dataset
  3. Train the machine learning model using the data
  4. Use this model to predict (inference) to produce examples of the paint author - use similarity metrics to verify the ability of the model to reproduce the painting style.

How it works...

Discriminative models will learn the boundary conditions between classes for a distribution:

  • Discriminative models get their power from more data
  • These models are not designed to work in an unsupervised manner or with unlabeled data

This can be described in a more graphical way, as follows:

  • Generative models will model the distribution of the classes for a given input distribution:
    • This creates a probabilistic model of each class in order to estimate the distribution
    • A generative model has the ability to use unlabeled data since it learns labels during the training process

This can be described in a more graphical way, as follows:

So, generative models are incredibly difficult to produce as they have to accurately model and reproduce the input distribution. The discriminative models are learning decision boundaries, which is why neural networks have been incredibly successful in recent years. The GAN architecture represents a radical departure from older techniques in the generative modeling area. We'll cover how neural networks are developed and then dive right in the GAN architecture development.

A neural network love story

Since you've come here to learn more about a specific neural network architecture, we're going to assume you have a baseline understanding of current machine and deep learning techniques that revolve around neural networks. Neural networks have exploded in popularity since the advent of the deep neural network-style architectures. By utilizing many hidden layers and large sums of data, modern deep learning techniques are able to exceed human-level performance in a dizzying number of applications. How is this possible? Neural networks are now able to learn baseline features and relationships in similar ways to our brains. Along those same lines, researchers have been exploring new styles of mixing neural networks to replicate the thought process that our brains take automatically. 

How to do it...

The story is a classic: researcher goes drinking with a few friends and has an epiphany- what if you were able to pit two neural networks against each other to solve a problem? Ian Goodfellow, affectionately called the GANfather, helped popularize this adversarial architecture with his hallmark paper in 2014, called Generative Adversarial Networks. Researchers all over the world began developing variations on this technique: can you pit three or more networks against each other? What happens when you provide more than one loss function? These are actually the types of questions you should be able to answer by the end of this book, because we'll focus on implementing modern renditions of this architecture to solve these types of problems.

How it works...

It's important to understand the difference and difficulties that surround generative and discriminative modeling. In recent years, discriminative modeling has seen some great successes. Typically requiring Markov decision processes in order for the generative modeling process to work, these techniques suffered from a lack of flexibility without heavy design tuning. That is, until the advent of the GANs architecture that we're discussing today. Goodfellow adequately summed up the issues surrounding discriminative and generative models in his paper in 2014:

Goodfellow and his coauthors presented a graphic on the challenges associated with generative modeling in the literature up until 2014

What are Goodfellow and his fellow authors getting at in this screenshot? Essentially, prior generative models were painful to train/build. GANs can have their challenges in terms of training and design, but represent a fundamental shift in flexibility in output given the ease of setup. In the Chapter 3, My First GAN in Under 100 Lines, we'll build a GAN network in under 100 lines of code. 

Deep neural networks

But first, let's review the concept of a deep neural network. A neural network, in ML, represents a technique to mimic the same neurological processes that occur in our brain. Neurons, like those in our brains, represent the basic building blocks of the neural network architecture that we use to learn and retain a baseline set of information around our knowledge.

How to do it...

Our neurological process uses previous experience as examples, learning a structure to understand the data and form a conclusion or output:

Neurons making connections to go from input to hidden layer to single output

This basic architecture will form the foundation of our deep neural network, which we'll present in the next section.

Here are the basic steps of how the model is built:

  1.  An input (an image or other input data) is sent into an input (static) layer
  2. The single or series of hidden layer then operates on this data
  3. The output layer aggregates all of this information into an output format

How it works...

Originally conceived in the early 1940s as a mathematical construct, the artificial neural network was popularized in the 1980s through a method called backpropagation. Backprop, for short, allows an artificial neural network to adjust the weights of each layer at every epoch of training. In the 1980s, the limits of computational power only allowed for a certain level of training. As the computing power expanded and the research grew, there was a renaissance with ML.

With the advent of cheap computing power, a new technique was born: deep neural networks. Utilizing the ability of GPUs to compute tensors very quickly, a few libraries have been developed to build these deep neural networks. To become a deep neural network, the basic premise is this: add four or more hidden layers between the input and output. Typically, there are thousands of neurons in the graph and the neural network has a much larger capacity to learn. This construct is illustrated in the following diagram:

A deep neural network is a relatively simple expansion of the basic architecture of the neural network

This represents the basic architecture for how a deep neural network is structured. There are plenty of modifications and basic restructuring of this architecture, but this basic graph provides the right pieces to implement a Deep Neural Network. How does all of this fit into GANs? Deep neural networks are a critical piece of the GAN architecture, as you'll see in the next section.

Practice building neural network architectures in frameworks such as scikit-learn or Keras to understand fundamental concepts. It's beneficial to understand the differences in various types of dropout and activation functions. These tools will serve you well as you work through the examples in this book.

Architecture structure basics

Now, this is the part you've been waiting for: how do I build a GAN? There are a few principal components to the construction of this network architecture. First, we need to have a method to produce neural networks easily, such as Keras or PyTorch (using the TensorFlow backend). This critical piece will be covered extensively in Chapter 2, Data First Easy Environment, and Data Prep and Chapter 3, My First GAN in Under 100 Lines. Second, we need to produce the two neural-network-based components, named the generator and discriminator.

How to do it...

The classic analogy is the counterfeiter (generator) and FBI agent (discriminator). The counterfeiter is constantly looking for new ways to produce fake documents that can pass the FBI agent's tests. Let's break it down into a set of goals:

  1. Counterfeiter (generator) goal: Produce products so that the cop cannot distinguish between the real and fake ones
  2. Cop (discriminator) goal: Detect anomalous products by using prior experience to classify real and fake products

How it works...

Now, enough with the analogies, right? Let's restructure this into a game-theory-style problem-the minimax problem from the first GAN implementation. The following steps illustrate how we can create this type of problem:

  • Generator goal: Maximize the likelihood that the discriminator misclassifies its output as real
  • Discriminator goal: Optimize toward a goal of 0.5, where the discriminator can't distinguish between real and generated images
The Minimax Problem (sometimes called MinMax) is a theory that focuses on maximizing a function at the greatest loss (or vice versa). In the case of GANs, this is represented by the two models training in an adversarial way. The training step will focus on minimizing the error on the training loss for the generator while getting as close to 0.5 as possible on the discriminator (where the discriminator can't tell the difference between real and fake).

In the GAN framework, the generator will start to train alongside the discriminator; the discriminator needs to train for a few epochs prior to starting the adversarial training as the discriminator will need to be able to actually classify images. There's one final piece to this structure, called the loss function. The loss function provides the stopping criteria for the Generator and Discriminator training processes. Given all of these pieces, how do we structure these pieces into something we can train? Check out the following diagram:

A high-level description of the flow of the Generative Adversarial Network, showing the basic functions in block format

With this architecture, it's time to break each piece into its component technology: generator, discriminator, and loss function. There will also be a section on training and inference to briefly cover how to train the model and get data out once it is trained.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Understand the common architecture of different types of GANs
  • Train, optimize, and deploy GAN applications using TensorFlow and Keras
  • Build generative models with real-world data sets, including 2D and 3D data

Description

Developing Generative Adversarial Networks (GANs) is a complex task, and it is often hard to find code that is easy to understand. This book leads you through eight different examples of modern GAN implementations, including CycleGAN, simGAN, DCGAN, and 2D image to 3D model generation. Each chapter contains useful recipes to build on a common architecture in Python, TensorFlow and Keras to explore increasingly difficult GAN architectures in an easy-to-read format. The book starts by covering the different types of GAN architecture to help you understand how the model works. This book also contains intuitive recipes to help you work with use cases involving DCGAN, Pix2Pix, and so on. To understand these complex applications, you will take different real-world data sets and put them to use. By the end of this book, you will be equipped to deal with the challenges and issues that you may face while working with GAN models, thanks to easy-to-follow code solutions that you can implement right away.

Who is this book for?

This book is for data scientists, machine learning developers, and deep learning practitioners looking for a quick reference to tackle challenges and tasks in the GAN domain. Familiarity with machine learning concepts and working knowledge of Python programming language will help you get the most out of the book.

What you will learn

  • Structure a GAN architecture in pseudocode
  • Understand the common architecture for each of the GAN models you will build
  • Implement different GAN architectures in TensorFlow and Keras
  • Use different datasets to enable neural network functionality in GAN models
  • Combine different GAN models and learn how to fine-tune them
  • Produce a model that can take 2D images and produce 3D models
  • Develop a GAN to do style transfer with Pix2Pix

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 31, 2018
Length: 268 pages
Edition : 1st
Language : English
ISBN-13 : 9781789139587
Category :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Dec 31, 2018
Length: 268 pages
Edition : 1st
Language : English
ISBN-13 : 9781789139587
Category :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Can$6 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just Can$6 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total Can$ 185.97
Generative Adversarial Networks Projects
Can$61.99
Generative Adversarial Networks Cookbook
Can$61.99
Keras 2.x Projects
Can$61.99
Total Can$ 185.97 Stars icon

Table of Contents

9 Chapters
What Is a Generative Adversarial Network? Chevron down icon Chevron up icon
Data First, Easy Environment, and Data Prep Chevron down icon Chevron up icon
My First GAN in Under 100 Lines Chevron down icon Chevron up icon
Dreaming of New Outdoor Structures Using DCGAN Chevron down icon Chevron up icon
Pix2Pix Image-to-Image Translation Chevron down icon Chevron up icon
Style Transfering Your Image Using CycleGAN Chevron down icon Chevron up icon
Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN Chevron down icon Chevron up icon
From Image to 3D Models Using GANs Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
(4 Ratings)
5 star 50%
4 star 0%
3 star 0%
2 star 0%
1 star 50%
joe m. Jun 04, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I'm a full time software developer who is looking to build some GANs to learn and this book was exactly what I was looking for. Breaking down the code and referencing the original papers is perfect, especially since I do not know python extremely well.From here I plan on buying a couple other ML books and then I would like to learn more about the math details but this book got me started on the right foot for me to go find out answers to all/most of my questions.
Amazon Verified review Amazon
Oliver Wesche Apr 16, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book was very insightful and I am glad that there are such niece books available to learn about emerging ML and AI technologies.
Amazon Verified review Amazon
Tony ZHu Mar 02, 2022
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
I have nothing to say, it does not worth your money
Amazon Verified review Amazon
Y. Cheng Oct 03, 2019
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
A lot of none sense printed in big fonts "How to do it" "Get ready". Legend are all in very tiny small font. He likes to say "here is how to do it" Then show part of codes. Then say "now you know how to do it." He also likes to waste readers' time by saying "Do you think I will stop here? No...." This book is watery. Not substantial. Figures are crapy. Some figures are corrupted and hard to read. Some scatter plots ought to be printed with different markers, o, x , square, because it's a black and white book. But author just print three groups of markers all in circle but with different color. Which makes readingthe figure impossible from the printed book. You can go to github to download figures. But it's so stupid. The listings of the codes wasted a lot of space on import packages and set up shells. The key part of the code are often omitted. Some genereated figures by GAN are shown as a block of grey image. Author does not even bother to generate a figure to be used in his book. But author spend time to mention he owned 36 cars. Anyway, I found Another book by Rowel Atienza is much more readable and helpful. I regret so much buying this book. Don't buy it.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.