Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Forecasting and Segmentation Using Microsoft Excel

You're reading from   Data Forecasting and Segmentation Using Microsoft Excel Perform data grouping, linear predictions, and time series machine learning statistics without using code

Arrow left icon
Product type Paperback
Published in May 2022
Publisher Packt
ISBN-13 9781803247731
Length 324 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Fernando Roque Fernando Roque
Author Profile Icon Fernando Roque
Fernando Roque
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 – An Introduction to Machine Learning Functions
2. Chapter 1: Understanding Data Segmentation FREE CHAPTER 3. Chapter 2: Applying Linear Regression 4. Chapter 3: What is Time Series? 5. Part 2 – Grouping Data to Find Segments and Outliers
6. Chapter 4: Introduction to Data Grouping 7. Chapter 5: Finding the Optimal Number of Single Variable Groups 8. Chapter 6: Finding the Optimal Number of Multi-Variable Groups 9. Chapter 7: Analyzing Outliers for Data Anomalies 10. Part 3 – Simple and Multiple Linear Regression Analysis
11. Chapter 8: Finding the Relationship between Variables 12. Chapter 9: Building, Training, and Validating a Linear Model 13. Chapter 10: Building, Training, and Validating a Multiple Regression Model 14. Part 4 – Predicting Values with Time Series
15. Chapter 11: Testing Data for Time Series Compliance 16. Chapter 12: Working with Time Series Using the Centered Moving Average and a Trending Component 17. Chapter 13: Training, Validating, and Running the Model 18. Other Books You May Enjoy

Summary

In this chapter, we learned how to plot variables to see whether they have a link before conducting statistical analysis. After this, we reviewed the differences between the expected values and the results from the linear model. These differences are the input for the formulas of the coefficient of determination and correlation, which show the variables' level of relationship and whether they are direct or inversely proportional.

Statistical methods such as t-statistics and the p-value tell us whether we can reject the null hypothesis. If the slope is zero, there is no relationship between the variables.

Once we have a level of confidence regarding the relationship between variables, we can conclude that the linear regression model is useful for building predictions. In the next chapter, we will write the formula of a simple (single-variable) regression model.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime