Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Cryptography Algorithms

You're reading from   Cryptography Algorithms Explore New Algorithms in Zero-knowledge, Homomorphic Encryption, and Quantum Cryptography

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781835080030
Length 410 pages
Edition 2nd Edition
Arrow right icon
Author (1):
Arrow left icon
Massimo Bertaccini Massimo Bertaccini
Author Profile Icon Massimo Bertaccini
Massimo Bertaccini
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: A Brief History and Outline of Cryptography
2. Deep Dive into Cryptography FREE CHAPTER 3. Section 2: Classical Cryptography (Symmetric and Asymmetric Encryption)
4. Symmetric Encryption Algorithms 5. Asymmetric Encryption Algorithms 6. Hash Functions and Digital Signatures 7. Section 3: New Cryptography Algorithms and Protocols
8. Zero-Knowledge Protocols 9. New Inventions in Cryptography and Logical Attacks 10. Elliptic Curves 11. Homomorphic Encryption and Crypto Search Engine 12. Section 4: Quantum Cryptography
13. Quantum Cryptography 14. Quantum Search Algorithms and Quantum Computing 15. Other Books You May Enjoy
16. Index

Shor’s algorithm

In an interview with David Deutsch (considered one of the fathers of quantum computing), the interviewer posed a question about the philosophy of superposition, asking David, “In what way does the quantum computing community give credit to the hypothesis of a multiverse?”

David’s answer refers to Q-Cryptography and, in particular, he tries to demonstrate the existence of the multiverse through the factorization problem. I will try to paraphrase David’s answer in the following paragraph:

Imagine deciding to factorize an integer number of 10,000 digits, a product of two big prime numbers. No classical computer can express this number as the product of its prime factors. Even if we take all the matter contained in the universe and transform it into a supercomputer, which starts to work for a time long, such as the universe’s time, this instrument will not be able to scratch the surface of the factorization problem. Instead...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image