Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
C# Data Structures and Algorithms

You're reading from   C# Data Structures and Algorithms Harness the power of C# to build a diverse range of efficient applications

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781803248271
Length 372 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Marcin Jamro Marcin Jamro
Author Profile Icon Marcin Jamro
Marcin Jamro
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Data Types 2. Chapter 2: Introduction to Algorithms FREE CHAPTER 3. Chapter 3: Arrays and Sorting 4. Chapter 4: Variants of Lists 5. Chapter 5: Stacks and Queues 6. Chapter 6: Dictionaries and Sets 7. Chapter 7: Variants of Trees 8. Chapter 8: Exploring Graphs 9. Chapter 9: See in Action 10. Chapter 10: Conclusion 11. Index 12. Other Books You May Enjoy

Shortest path

A graph is a great data structure for storing data of various maps, such as cities and the distances between them. For this reason, one of the obvious real-world applications of graphs is searching for the shortest path between two nodes, which takes into account a specific cost, such as the distance, the necessary time, or even the amount of fuel required.

There are several approaches to the topic of searching for the shortest path in a graph. However, one of the common solutions is Dijkstra’s algorithm, which makes it possible to calculate the distance from a starting node to all nodes located in the graph. Then, you can easily get not only the cost of the connection between two nodes but also find nodes that are between the start and end nodes.

Dijkstra’s algorithm uses two auxiliary node-related arrays:

  • One for storing an identifier of the previous node, which is the node from which the current node can be reached with the smallest overall...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime