Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Big Data Analysis with Python

You're reading from   Big Data Analysis with Python Combine Spark and Python to unlock the powers of parallel computing and machine learning

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789955286
Length 276 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Ivan Marin Ivan Marin
Author Profile Icon Ivan Marin
Ivan Marin
Sarang VK Sarang VK
Author Profile Icon Sarang VK
Sarang VK
Ankit Shukla Ankit Shukla
Author Profile Icon Ankit Shukla
Ankit Shukla
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Big Data Analysis with Python
Preface
1. The Python Data Science Stack FREE CHAPTER 2. Statistical Visualizations 3. Working with Big Data Frameworks 4. Diving Deeper with Spark 5. Handling Missing Values and Correlation Analysis 6. Exploratory Data Analysis 7. Reproducibility in Big Data Analysis 8. Creating a Full Analysis Report Appendix

Chapter 04: Diving Deeper with Spark


Activity 9: Getting Started with Spark DataFrames

If you are using Google Collab to run the Jupyter notebook, add these lines to ensure you have set the environment:

!apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -q http://www-us.apache.org/dist/spark/spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz
!tar xf spark-2.4.0-bin-hadoop2.7.tgz
!pip install -q findspark
import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-2.4.2-bin-hadoop2.7"

Install findspark if not installed using the following command:

pip install -q findspark
  1. To create a sample DataFrame by manually specifying the schema, importing findspark module to connect Jupyter with Spark:

    import findspark
    findspark.init()
    import pyspark
    import os
  2. Create the SparkContext and SQLContext using the following command:

    sc = pyspark.SparkContext()
    from pyspark.sql import SQLContext
    sqlc = SQLContext(sc)
    
    from pyspark.sql import *
    na_schema = Row("Name","Subject","Marks")
    row1 = na_schema("Ankit", "Science",95)
    row2 = na_schema("Ankit", "Maths", 86)
    row3 = na_schema("Preity", "Maths", 92)
    na_list = [row1, row2, row3]
    df_na = sqlc.createDataFrame(na_list)
    type(df_na)

    The output is as follows:

    pyspark.sql.dataframe.DataFrame
  3. Check the DataFrame using the following command:

    df_na.show()

    The output is as follows:

    Figure 4.29: Sample DataFrame

  4. Create a sample DataFrame from an existing RDD. First creating RDD as illustrated here:

    data = [("Ankit","Science",95),("Preity","Maths",86),("Ankit","Maths",86)]
    data_rdd = sc.parallelize(data)
    type(data_rdd)

    The output is as follows:

    pyspark.rdd.RDD
  5. Converting RDD to DataFrame using the following command:

    data_df = sqlc.createDataFrame(data_rdd)
    data_df.show()

    The output is as follows:

    Figure 4.30: RDD to DataFrame

  6. Create a sample DataFrame by reading the data from a CSV file:

    df = sqlc.read.format('com.databricks.spark.csv').options(header='true', inferschema='true').load('mtcars.csv')
    type(df)

    The output is as follows:

    pyspark.sql.dataframe.DataFrame
  7. Print first seven rows of the DataFrame:

    df.show(7)

    The output is as follows:

    Figure 4.31: First seven rows of the DataFrame

  8. Print the schema of the DataFrame:

    df.printSchema()
  9. The output is as follows:

    Figure 4.32: Schema of the DataFrame

  10. Print the number of columns and rows in DataFrame:

    print('number of rows:'+ str(df.count()))
    print('number of columns:'+ str(len(df.columns)))

    The output is as follows:

    number of rows:32
    number of columns:11
  11. Print the summary statistics of DataFrame and any two individual columns:

    df.describe().show()

    The output is as follows:

    Figure 4.33: Summary statistics of DataFrame

    Print the summary of any two columns:

    df.describe(['mpg','cyl']).show()

    The output is as follows:

    Figure 4.34: Summary statistics of mpg and cyl columns

  12. Write first seen rows of the sample DataFrame in a CSV file:

    df_p = df.toPandas()
    df_p.head(7).to_csv("mtcars_head.csv")

Activity 10: Data Manipulation with Spark DataFrames

  1. Install the packages as illustrated here:

    !apt-get install openjdk-8-jdk-headless -qq > /dev/null
    !wget -q http://www-us.apache.org/dist/spark/spark-2.4.0/spark-2.4.0-bin-hadoop2.7.tgz
    !tar xf spark-2.4.0-bin-hadoop2.7.tgz
    !pip install -q findspark
    import os
    os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
    os.environ["SPARK_HOME"] = "/content/spark-2.4.0-bin-hadoop2.7"
  2. Then, import the findspark module to connect the Jupyter with Spark use the following command:

    import findspark
    findspark.init()
    import pyspark
    import os
  3. Now, create the SparkContext and SQLContext as illustrated here:

    sc = pyspark.SparkContext()
    from pyspark.sql import SQLContext
    sqlc = SQLContext(sc)
  4. Create a DataFrame in Spark as illustrated here:

    df = sqlc.read.format('com.databricks.spark.csv').options(header='true', inferschema='true').load('mtcars.csv')
    df.show(4)

    The output is as follows:

    Figure 4.35: DataFrame in Spark

  5. Rename any five columns of DataFrame using the following command:

    data = df
    new_names = ['mpg_new', 'cyl_new', 'disp_new', 'hp_new', 'drat_new']
    for i,z in zip(data.columns[0:5],new_names):
        data = data.withColumnRenamed(str(i),str(z))
        
    data.columns

    The output is as follows:

    Figure 4.36: Columns of DataFrame

  6. Select any two numeric and one categorical column from the DataFrame:

    data = df.select(['cyl','mpg','hp'])
    data.show(5)

    The output is as follows:

    Figure 4.37: Two numeric and one categorical column from the DataFrame

  7. Count the number of distinct categories in the categorical variable:

    data.select('cyl').distinct().count() #3
  8. Create two new columns in DataFrame by summing up and multiplying together the two numerical columns:

    data = data.withColumn('colsum',(df['mpg'] + df['hp']))
    data = data.withColumn('colproduct',(df['mpg'] * df['hp']))
    data.show(5)

    The output is as follows:

    Figure 4.38: New columns in DataFrame

  9. Drop both the original numerical columns:

    data = data.drop('mpg','hp')
    data.show(5)

    Figure 4.39: New columns in DataFrame after dropping

  10. Sort the data by categorical column:

    data = data.orderBy(data.cyl)
    data.show(5)

    The output is as follows:

    Figure 4.40: Sort data by categorical columns

  11. Calculate the mean of the summation column for each distinct category in the categorical variable:

    data.groupby('cyl').agg({'colsum':'mean'}).show()

    The output is as follows:

    Figure 4.41: Mean of the summation column

  12. Filter the rows with values greater than the mean of all the mean values calculated in the previous step:

    data.count()#15
    cyl_avg = data.groupby('cyl').agg({'colsum':'mean'})
    avg = cyl_avg.agg({'avg(colsum)':'mean'}).toPandas().iloc[0,0]
    data = data.filter(data.colsum > avg)
    data.count()
    data.show(5)

    The output is as follows:

    Figure 4.42: Mean of all the mean values calculated of the summation column

  13. De-duplicate the resultant DataFrame to make sure it has all unique records:

    data = data.dropDuplicates()
    data.count()

    The output is 15.

Activity 11: Graphs in Spark

  1. Import the required Python libraries in the Jupyter Notebook:

    import pandas as pd
    import os
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
  2. Read and show the data from the CSV file using the following command:

    df = pd.read_csv('mtcars.csv')
    df.head()

    The output is as follows:

    Figure 4.43: Auto-mpg DataFrame

  3. Visualize the discrete frequency distribution of any continuous numeric variable from your dataset using a histogram:

    plt.hist(df['mpg'], bins=20)
    plt.ylabel('Frequency')
    plt.xlabel('Values')
    plt.title('Frequency distribution of mpg')
    plt.show()

    The output is as follows:

    Figure 4.44: Discrete frequency distribution histogram

  4. Visualize the percentage share of the categories in the dataset using a pie chart:

    ## Calculate count of records for each gear
    data = pd.DataFrame([[3,4,5],df['gear'].value_counts().tolist()]).T
    data.columns = ['gear','gear_counts']
    
    ## Visualising percentage contribution of each gear in data using pie chart
    plt.pie(data.gear_counts, labels=data.gear, startangle=90, autopct='%.1f%%')
    plt.title('Percentage contribution of each gear')
    plt.show()

    The output is as follows:

    Figure 4.45: Percentage share of the categories using pie chart

  5. Plot the distribution of a continuous variable across the categories of a categorical variable using a boxplot:

    sns.boxplot(x = 'gear', y = 'disp', data = df)
    plt.show()

    The output is as follows:

    Figure 4.46: Distribution of a continuous using boxplot

  6. Visualize the values of a continuous numeric variable using a line chart:

    data = df[['hp']]
    data.plot(linestyle='-')
    plt.title('Line Chart for hp')
    plt.ylabel('Values')
    plt.xlabel('Row number')
    plt.show()

    The output is as follows:

    Figure 4.47: Continuous numeric variable using a line chart

  7. Plot the values of multiple continuous numeric variables on the same line chart:

    data = df[['hp','disp', 'mpg']]
    data.plot(linestyle='-')
    plt.title('Line Chart for hp, disp & mpg')
    plt.ylabel('Values')
    plt.xlabel('Row number')
    plt.show()

    The output is as follows:

    Figure 4.48: Multiple continuous numeric variables

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image