Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Spark Machine Learning Blueprints

You're reading from   Apache Spark Machine Learning Blueprints Develop a range of cutting-edge machine learning projects with Apache Spark using this actionable guide

Arrow left icon
Product type Paperback
Published in May 2016
Publisher Packt
ISBN-13 9781785880391
Length 252 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Alex Liu Alex Liu
Author Profile Icon Alex Liu
Alex Liu
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Spark for Machine Learning FREE CHAPTER 2. Data Preparation for Spark ML 3. A Holistic View on Spark 4. Fraud Detection on Spark 5. Risk Scoring on Spark 6. Churn Prediction on Spark 7. Recommendations on Spark 8. Learning Analytics on Spark 9. City Analytics on Spark 10. Learning Telco Data on Spark 11. Modeling Open Data on Spark Index

Preface

As data scientists and machine learning professionals, our jobs are to build models for detecting frauds, predicting customer churns, or turning data into insights in a broad sense; for this, we sometimes need to process huge amounts of data and handle complicated computations. Therefore, we are always excited to see new computing tools, such as Spark, and spend a lot of time learning about them. To learn about these new tools, a lot of learning materials are available, but they are from a more computing perspective, and often written by computer scientists.

We, the data scientists and machine learning professionals, as users of Spark, are more concerned about how the new systems can help us build models with more predictive accuracy and how these systems can make data processing and coding easy for us. This is the main reason why this book has been developed and why this book has been written by a data scientist.

At the same time, we, as data scientists and machine learning professionals, have already developed our frameworks and processes as well as used some good model building tools, such as R and SPSS. We understand that some of the new tools, such as MLlib of Spark, may replace certain old tools, but not all of them. Therefore, using Spark together with our existing tools is essential to us as users of Spark and becomes one of the main focuses for this book, which is also one of the critical elements, making this book different from other Spark books.

Overall, this is a Spark book written by a data scientist for data scientists and machine learning professionals to make machine learning easy for us with Spark.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image