Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Spark 2: Data Processing and Real-Time Analytics

You're reading from   Apache Spark 2: Data Processing and Real-Time Analytics Master complex big data processing, stream analytics, and machine learning with Apache Spark

Arrow left icon
Product type Course
Published in Dec 2018
Publisher Packt
ISBN-13 9781789959208
Length 616 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (7):
Arrow left icon
Sridhar Alla Sridhar Alla
Author Profile Icon Sridhar Alla
Sridhar Alla
Romeo Kienzler Romeo Kienzler
Author Profile Icon Romeo Kienzler
Romeo Kienzler
Siamak Amirghodsi Siamak Amirghodsi
Author Profile Icon Siamak Amirghodsi
Siamak Amirghodsi
Broderick Hall Broderick Hall
Author Profile Icon Broderick Hall
Broderick Hall
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Meenakshi Rajendran Meenakshi Rajendran
Author Profile Icon Meenakshi Rajendran
Meenakshi Rajendran
Shuen Mei Shuen Mei
Author Profile Icon Shuen Mei
Shuen Mei
+3 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Title Page
Copyright
About Packt
Contributors
Preface
1. A First Taste and What's New in Apache Spark V2 FREE CHAPTER 2. Apache Spark Streaming 3. Structured Streaming 4. Apache Spark MLlib 5. Apache SparkML 6. Apache SystemML 7. Apache Spark GraphX 8. Spark Tuning 9. Testing and Debugging Spark 10. Practical Machine Learning with Spark Using Scala 11. Spark's Three Data Musketeers for Machine Learning - Perfect Together 12. Common Recipes for Implementing a Robust Machine Learning System 13. Recommendation Engine that Scales with Spark 14. Unsupervised Clustering with Apache Spark 2.0 15. Implementing Text Analytics with Spark 2.0 ML Library 16. Spark Streaming and Machine Learning Library 1. Other Books You May Enjoy Index

Artificial neural networks


The following figure shows a simple biological neuron to the left. The neuron has dendrites that receive signals from other neurons. A cell body controls activation, and an axon carries an electrical impulse to the dendrites of other neurons. The artificial neuron to the right has a series of weighted inputs: a summing function that groups the inputs and a firing mechanism (F(Net)), which decides whether the inputs have reached a threshold, and, if so, the neuron will fire:

Neural networks are tolerant of noisy images and distortion, and so are useful when a black box classification method is needed for potentially degraded images. The next area to consider is the summation function for the neuron inputs. The following diagram shows the summation function called Net for neuron i. The connections between the neurons that have the weighting values, contain the stored knowledge of the network. Generally, a network will have an input layer, output layer, and a number...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image