Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon

Diffractive Deep Neural Network (D2NN): UCLA-developed AI device can identify objects at the speed of light

Save for later
  • 3 min read
  • 08 Aug 2018

article-image

Researchers at the University of California, Los Angeles (UCLA) have developed a 3D-printed all-optical deep learning architecture called Diffractive Deep Neural Network (D2NN).

D2NN is a deep learning neural network physically formed by multiple layers of diffractive surfaces that work in collaboration to optically perform an arbitrary function. While the inference/prediction of the physical network is all-optical, the learning part that leads to its design is done through a computer.

How does D2NN work?


A computer-simulated design was created first, then the researchers with the help of a 3D printer created very thin polymer wafers. The uneven surface of the wafers helped diffract light coming from the object in different directions. The layers are composed of tens of thousands of artificial neurons or tiny pixels from which the light travels through.

These layers together, form an “optical network” that shapes how incoming light travels through them. The network is able to identify an object because the light coming from the object is diffracted mostly toward a single pixel that is assigned to that type of object.

The network was then trained using a computer to identify the objects in front of it by learning the pattern of diffracted light each object produced as the light from that object passes through the device.

What are its advantages?

  • Scalable: It can easily be scaled up using numerous high-throughput and large-area 3D fabrication methods, such as, soft-lithography, additive manufacturing, and wide-field optical components and detection systems.
  • Easily reconfigurable: D2NN can be easily improved by additional 3D printed layers or replacing some of the existing layers with newly trained ones.
  • Lightening speed: Once the device is trained, it works at the speed of light.
  • Efficient: No energy is consumed to run the device.
  • Cost-effective: The device can be reproduced for less than $50, making it very cost-effective.
  • Unlock access to the largest independent learning library in Tech for FREE!
    Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
    Renews at $19.99/month. Cancel anytime

What are the areas it can be used in?

  • Image analysis
  • Feature detection
  • Object classification
  • Can also enable new microscope or camera designs that can perform unique imaging tasks


This new AI device could find applications in the area of medical technologies, data intensive tasks, robotics, security, and or any application where image and video data are essential.

Refer to UCLA’s official news article to know more in detail. Also, you can refer to this paper  All-optical machine learning using diffractive deep neural Networks.

OpenAI builds reinforcement learning based system giving robots human like dexterity

Datasets and deep learning methodologies to extend image-based applications to videos

AutoAugment: Google’s research initiative to improve deep learning performance