Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Supervised Learning Workshop

You're reading from   The Supervised Learning Workshop Predict outcomes from data by building your own powerful predictive models with machine learning in Python

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781800209046
Length 532 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Blaine Bateman Blaine Bateman
Author Profile Icon Blaine Bateman
Blaine Bateman
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Ishita Mathur Ishita Mathur
Author Profile Icon Ishita Mathur
Ishita Mathur
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Arrow right icon
View More author details
Toc

Ordinary Least Squares as a Classifier

We covered ordinary least squares (OLS) as linear regression in the context of predicting continuous variable output in the previous chapter, but it can also be used to predict the class that a set of data is a member of. OLS-based classifiers are not as powerful as other types of classifiers that we will cover in this chapter, but they are particularly useful in understanding the process of classification. To recap, an OLS-based classifier is a non-probabilistic, linear binary classifier. It is non-probabilistic because it does not generate any confidence over the prediction such as, for example, logistic regression. It is a linear classifier as it has a linear relationship with respect to its parameters/coefficient.

Now, let's say we had a fictional dataset containing two separate groups, Xs and Os, as shown in Figure 5.1. We could construct a linear classifier by first using OLS linear regression to fit the equation of a straight line...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime