Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Raspberry Pi Computer Vision Programming

You're reading from   Raspberry Pi Computer Vision Programming Design and implement computer vision applications with Raspberry Pi, OpenCV, and Python 3

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781800207219
Length 306 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ashwin Pajankar Ashwin Pajankar
Author Profile Icon Ashwin Pajankar
Ashwin Pajankar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Chapter 1: Introduction to Computer Vision and the Raspberry Pi 2. Chapter 2: Preparing the Raspberry Pi for Computer Vision FREE CHAPTER 3. Chapter 3: Introduction to Python Programming 4. Chapter 4: Getting Started with Computer Vision 5. Chapter 5: Basics of Image Processing 6. Chapter 6: Colorspaces, Transformations, and Thresholding 7. Chapter 7: Let's Make Some Noise 8. Chapter 8: High-Pass Filters and Feature Detection 9. Chapter 9: Image Restoration, Segmentation, and Depth Maps 10. Chapter 10: Histograms, Contours, and Morphological Transformations 11. Chapter 11: Real-Life Applications of Computer Vision 12. Chapter 12: Working with Mahotas and Jupyter 13. Chapter 13: Appendix 14. Other Books You May Enjoy

Detecting barcodes in images

A barcode is a way that information is represented visually and is easy to understand for purpose-made machines. There are many barcode formats. The usual format has parallel vertical lines of different thicknesses and different amounts of space in between them.

In this section, we will demonstrate how to detect a simple parallel-lines formatted barcode from a still image. We will use the following image of a soda can:

Figure 11.6 – The original source image

  1. Let's read the source image of a soda can using the following code:
    import numpy as np
    import cv2
    image=cv2.imread('/home/pi/book/dataset/barcode.jpeg', 1)
    input = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  2. The horizontal image of a barcode has a low and a high vertical gradient. So, the candidate image must have the region that fits this criterion. We will use the cv2.Sobel() function to compute the horizontal and vertical derivatives and...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime