Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Real-World Projects

You're reading from   Python Real-World Projects Craft your Python portfolio with deployable applications

Arrow left icon
Product type Paperback
Published in Sep 2023
Publisher Packt
ISBN-13 9781803246765
Length 478 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Chapter 1: Project Zero: A Template for Other Projects 2. Chapter 2: Overview of the Projects FREE CHAPTER 3. Chapter 3: Project 1.1: Data Acquisition Base Application 4. Chapter 4: Data Acquisition Features: Web APIs and Scraping 5. Chapter 5: Data Acquisition Features: SQL Database 6. Chapter 6: Project 2.1: Data Inspection Notebook 7. Chapter 7: Data Inspection Features 8. Chapter 8: Project 2.5: Schema and Metadata 9. Chapter 9: Project 3.1: Data Cleaning Base Application 10. Chapter 10: Data Cleaning Features 11. Chapter 11: Project 3.7: Interim Data Persistence 12. Chapter 12: Project 3.8: Integrated Data Acquisition Web Service 13. Chapter 13: Project 4.1: Visual Analysis Techniques 14. Chapter 14: Project 4.2: Creating Reports 15. Chapter 15: Project 5.1: Modeling Base Application 16. Chapter 16: Project 5.2: Simple Multivariate Statistics 17. Chapter 17: Next Steps 18. Other Books You Might Enjoy 19. Index

2.6 Statistical modeling

The point of data analysis is to digest raw data and present information to people to support their decision-making. The previous stages of the pipeline have prepared two important things:

  • Raw data has been cleaned and standardized to provide data that are relatively easy to analyze.

  • The process of inspecting and summarizing the data has helped analysts, developers, and, ultimately, users understand what the information means.

The confluence of data and deeper meaning creates significant value for an enterprise. The analysis process can continue as more formalized statistical modeling. This, in turn, may lead to artificial intelligence (AI) and machine learning (ML) applications.

The processing pipeline includes these projects to gather summaries of individual variables as well as combinations of variables:

  • Project 5.1: ”Statistical Model: Core Processing”. This project builds the base application for applying statistical models and saving parameters about the data. This will focus on summaries like mean, median, mode, and variance.

  • Project 5.2: ”Statistical Model: Relationships”. It’s common to want to know the relationships among variables. This includes measures like correlation among variables.

This sequence of stages produces high-quality data and provides ways to diagnose and debug problems with data sources. The sequence of projects will illustrate how automated solutions and interactive inspection can be used to create useful, timely, insightful reporting and analysis.

You have been reading a chapter from
Python Real-World Projects
Published in: Sep 2023
Publisher: Packt
ISBN-13: 9781803246765
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image