Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning By Example

You're reading from   Python Machine Learning By Example The easiest way to get into machine learning

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781783553112
Length 254 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Getting Started with Python and Machine Learning 2. Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms FREE CHAPTER 3. Spam Email Detection with Naive Bayes 4. News Topic Classification with Support Vector Machine 5. Click-Through Prediction with Tree-Based Algorithms 6. Click-Through Prediction with Logistic Regression 7. Stock Price Prediction with Regression Algorithms 8. Best Practices

News Topic Classification with Support Vector Machine

This chapter continues our journey of classifying text data, a great starting point of learning machine learning classification with broad real-life applications. We will be focusing on topic classification on the news data we used in Chapter 2, Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms and using another powerful classifier, support vector machine, to solve such problems.

We will get into details for the topics mentioned:

  • Term frequency-inverse document frequency
  • Support vector machine
  • The mechanics of SVM
  • The implementations of SVM
  • Multiclass classification strategies
  • The nonlinear kernels of SVM
  • Choosing between linear and Gaussian kernels
  • Overfitting and reducing overfitting in SVM
  • News topic classification with SVM
  • Tuning with grid search and cross-validation
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime