Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Guide to Applied Conformal Prediction in Python

You're reading from   Practical Guide to Applied Conformal Prediction in Python Learn and apply the best uncertainty frameworks to your industry applications

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781805122760
Length 240 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Valery Manokhin Valery Manokhin
Author Profile Icon Valery Manokhin
Valery Manokhin
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1: Introduction FREE CHAPTER
2. Chapter 1: Introducing Conformal Prediction 3. Chapter 2: Overview of Conformal Prediction 4. Part 2: Conformal Prediction Framework
5. Chapter 3: Fundamentals of Conformal Prediction 6. Chapter 4: Validity and Efficiency of Conformal Prediction 7. Chapter 5: Types of Conformal Predictors 8. Part 3: Applications of Conformal Prediction
9. Chapter 6: Conformal Prediction for Classification 10. Chapter 7: Conformal Prediction for Regression 11. Chapter 8: Conformal Prediction for Time Series and Forecasting 12. Chapter 9: Conformal Prediction for Computer Vision 13. Chapter 10: Conformal Prediction for Natural Language Processing 14. Part 4: Advanced Topics
15. Chapter 11: Handling Imbalanced Data 16. Chapter 12: Multi-Class Conformal Prediction 17. Index 18. Other Books You May Enjoy

Conformal Prediction for Computer Vision

In today’s fast-paced world, computer vision has grown beyond mere image recognition to be a fundamental cornerstone in numerous real-world applications. From self-driving cars navigating bustling streets to medical imaging systems that detect early signs of diseases, the demand for reliable and accurate computer vision models has never been higher. However, with the increasing complexity of these systems and their applications, a critical need arises for the ability to quantify the uncertainty associated with their predictions.

Enter conformal prediction, a ground-breaking framework that offers a robust means to encapsulate the uncertainty inherent in machine learning models. While traditional computer vision models often produce a singular prediction, the true power of conformal prediction lies in its ability to provide a set of possible outcomes, each backed by a confidence level. This offers practitioners a more informed, nuanced...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime