Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Convolutional Neural Networks

You're reading from   Practical Convolutional Neural Networks Implement advanced deep learning models using Python

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788392303
Length 218 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Mohit Sewak Mohit Sewak
Author Profile Icon Mohit Sewak
Mohit Sewak
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Pradeep Pujari Pradeep Pujari
Author Profile Icon Pradeep Pujari
Pradeep Pujari
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Deep Neural Networks – Overview FREE CHAPTER 2. Introduction to Convolutional Neural Networks 3. Build Your First CNN and Performance Optimization 4. Popular CNN Model Architectures 5. Transfer Learning 6. Autoencoders for CNN 7. Object Detection and Instance Segmentation with CNN 8. GAN: Generating New Images with CNN 9. Attention Mechanism for CNN and Visual Models 10. Other Books You May Enjoy

To get the most out of this book

This book is focused on building CNNs with Python programming language. We have used Python version 2.7 (2x) to build various applications and the open source and enterprise-ready professional software using Python, Spyder, Anaconda, and PyCharm. Many of the examples are also compatible with Python 3x. As a good practice, we encourage users to use Python virtual environments for implementing these codes.

We focus on how to utilize various Python and deep learning libraries (Keras, TensorFlow, and Caffe) in the best possible way to build real-world applications. In that spirit, we have tried to keep all of the code as friendly and readable as possible. We feel that this will enable our readers to easily understand the code and readily use it in different scenarios.

Download the example code files

You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

  1. Log in or register at www.packtpub.com.
  2. Select the SUPPORT tab.
  3. Click on Code Downloads & Errata.
  4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR/7-Zip for Windows
  • Zipeg/iZip/UnRarX for Mac
  • 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Practical-Convolutional-Neural-Networks. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system."

A block of code is set as follows:

import tensorflow as tf

#Creating TensorFlow object 
hello_constant = tf.constant('Hello World!', name = 'hello_constant')
#Creating a session object for execution of the computational graph
with tf.Session() as sess:

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

x = tf.subtract(1, 2,name=None) # -1
y = tf.multiply(2, 5,name=None) # 10

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select System info from the Administration panel."

Warnings or important notes appear like this.
Tips and tricks appear like this.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image